How do you prove the identity \[\dfrac{{cosec \theta - 1}}{{\cot \theta }} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}\]?
Answer
Verified
438.6k+ views
Hint:Start from the left hand side and multiply both numerator and denominator by \[cosec \theta + 1\]. Then use the trigonometric formula ${cosec ^2}\theta - {\cot ^2}\theta = 1$ to simplify it further and bring it in the form of the right hand side.
Complete step by step answer:According to the question, we have been given a trigonometric identity and we are asked to prove it.
The trigonometric identity is:
\[ \Rightarrow \dfrac{{cosec \theta - 1}}{{\cot \theta }} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}{\text{ }}.....{\text{(1)}}\]
We’ll start with the left hand side and apply trigonometric formulas to convert it in the form of right hand side.
So we have:
\[ \Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }}\]
If we multiply both numerator and denominator by \[cosec \theta + 1\], we’ll get:
\[
\Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }} \times \dfrac{{cosec \theta + 1}}{{cosec \theta + 1}} \\
\Rightarrow {\text{LHS}} = \dfrac{{\left( {cosec \theta - 1} \right)\left( {cosec \theta + 1} \right)}}{{\cot \theta \left( {cosec \theta + 1} \right)}} \\
\]
We know an important algebraic formula as:
\[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Applying this formula in our trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{cosec }^2}\theta - 1}}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
Now, we have a trigonometric formula as given below:
$ \Rightarrow {cosec ^2}\theta - {\cot ^2}\theta = 1$
Separating terms in this formula, we have:
$ \Rightarrow {cosec ^2}\theta - 1 = {\cot ^2}\theta $
So putting this value of ${cosec ^2}\theta - 1$ in our above trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{\cot }^2}\theta }}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
On further simplification, \[\cot \theta \] will get cancel out from both numerator and denominator. Doing this we will get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}\]
Now comparing this final expression with the expression in equation (1), we can conclude that:
\[ \Rightarrow {\text{LHS}} = {\text{RHS}}\]
Therefore this is how we prove this identity.
Note:
In this problem, we can also start from the right hand side and simplify it to bring it in the form of the left hand side. The solution will still be correct conceptually.
Some of the widely used trigonometric formulas are:
(1) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
(2) ${\sec ^2}\theta - {\tan ^2}\theta = 1$
(3) ${cosec ^2}\theta - {\cot ^2}\theta = 1$
The last formula we have already used in the above problem.
Complete step by step answer:According to the question, we have been given a trigonometric identity and we are asked to prove it.
The trigonometric identity is:
\[ \Rightarrow \dfrac{{cosec \theta - 1}}{{\cot \theta }} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}{\text{ }}.....{\text{(1)}}\]
We’ll start with the left hand side and apply trigonometric formulas to convert it in the form of right hand side.
So we have:
\[ \Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }}\]
If we multiply both numerator and denominator by \[cosec \theta + 1\], we’ll get:
\[
\Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }} \times \dfrac{{cosec \theta + 1}}{{cosec \theta + 1}} \\
\Rightarrow {\text{LHS}} = \dfrac{{\left( {cosec \theta - 1} \right)\left( {cosec \theta + 1} \right)}}{{\cot \theta \left( {cosec \theta + 1} \right)}} \\
\]
We know an important algebraic formula as:
\[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Applying this formula in our trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{cosec }^2}\theta - 1}}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
Now, we have a trigonometric formula as given below:
$ \Rightarrow {cosec ^2}\theta - {\cot ^2}\theta = 1$
Separating terms in this formula, we have:
$ \Rightarrow {cosec ^2}\theta - 1 = {\cot ^2}\theta $
So putting this value of ${cosec ^2}\theta - 1$ in our above trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{\cot }^2}\theta }}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
On further simplification, \[\cot \theta \] will get cancel out from both numerator and denominator. Doing this we will get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}\]
Now comparing this final expression with the expression in equation (1), we can conclude that:
\[ \Rightarrow {\text{LHS}} = {\text{RHS}}\]
Therefore this is how we prove this identity.
Note:
In this problem, we can also start from the right hand side and simplify it to bring it in the form of the left hand side. The solution will still be correct conceptually.
Some of the widely used trigonometric formulas are:
(1) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
(2) ${\sec ^2}\theta - {\tan ^2}\theta = 1$
(3) ${cosec ^2}\theta - {\cot ^2}\theta = 1$
The last formula we have already used in the above problem.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE