Answer
Verified
494.7k+ views
Hint: Divide numerator and denominator by $\cos {{9}^{\circ }}$ or $\sin {{9}^{\circ }}$ to get a trigonometric identity.
Complete step-by-step answer:
Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.
We have to prove that,
$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$
Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$
Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$
We have trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$
Hence, equation (ii) can be simplified as
LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$
As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as
LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$
Now, using trigonometric identity,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$
Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$
Therefore, LHS = RHS = $\cot {{36}^{\circ }}$
Hence proved the given relation
Note: Another approach for the given question would be to use trigonometric identities
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Use relation $\cos \theta =\sin \left( 90-\theta \right)$
So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$
One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .
He or she may confuse between formula tan(A-B) and tan(A+B).
Complete step-by-step answer:
Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.
We have to prove that,
$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$
Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$
Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$
We have trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$
Hence, equation (ii) can be simplified as
LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$
As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as
LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$
Now, using trigonometric identity,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$
Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$
Therefore, LHS = RHS = $\cot {{36}^{\circ }}$
Hence proved the given relation
Note: Another approach for the given question would be to use trigonometric identities
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Use relation $\cos \theta =\sin \left( 90-\theta \right)$
So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$
One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .
He or she may confuse between formula tan(A-B) and tan(A+B).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it