
Prove the identity, $\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}$
Answer
606.3k+ views
Hint: Divide numerator and denominator by $\cos {{9}^{\circ }}$ or $\sin {{9}^{\circ }}$ to get a trigonometric identity.
Complete step-by-step answer:
Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.
We have to prove that,
$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$
Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$
Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$
We have trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$
Hence, equation (ii) can be simplified as
LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$
As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as
LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$
Now, using trigonometric identity,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$
Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$
Therefore, LHS = RHS = $\cot {{36}^{\circ }}$
Hence proved the given relation
Note: Another approach for the given question would be to use trigonometric identities
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Use relation $\cos \theta =\sin \left( 90-\theta \right)$
So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$
One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .
He or she may confuse between formula tan(A-B) and tan(A+B).
Complete step-by-step answer:
Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.
We have to prove that,
$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$
Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$
Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,
LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$
We have trigonometric identity,
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$
Hence, equation (ii) can be simplified as
LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$
As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as
LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$
Now, using trigonometric identity,
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$
Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$
Therefore, LHS = RHS = $\cot {{36}^{\circ }}$
Hence proved the given relation
Note: Another approach for the given question would be to use trigonometric identities
$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$
$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$
Use relation $\cos \theta =\sin \left( 90-\theta \right)$
So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$
One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .
He or she may confuse between formula tan(A-B) and tan(A+B).
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

