# Prove the identity, $\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}$

Answer

Verified

363.9k+ views

Hint: Divide numerator and denominator by $\cos {{9}^{\circ }}$ or $\sin {{9}^{\circ }}$ to get a trigonometric identity.

Complete step-by-step answer:

Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.

We have to prove that,

$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$

Let us prove the given relation by simplifying LHS of equation (i) we have,

LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$

Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,

LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$

Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,

LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$

We have trigonometric identity,

$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$

Hence, equation (ii) can be simplified as

LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$

As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as

LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$

Now, using trigonometric identity,

$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$

Hence equation (iv) can be rewritten with the help of the above equation. So, we get

LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$

Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.

Hence, LHS can be given as

LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$

Therefore, LHS = RHS = $\cot {{36}^{\circ }}$

Hence proved the given relation

Note: Another approach for the given question would be to use trigonometric identities

$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$

$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$

Use relation $\cos \theta =\sin \left( 90-\theta \right)$

So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$

One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .

He or she may confuse between formula tan(A-B) and tan(A+B).

Complete step-by-step answer:

Use relation $\cot \left( 90-\theta \right)=\tan \theta $ or $\tan \left( 90-\theta \right)=\cot \theta $ for simplifying it further.

We have to prove that,

$\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)$

Let us prove the given relation by simplifying LHS of equation (i) we have,

LHS$=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}$

Dividing numerator and denominator by $\cos {{9}^{\circ }}$, we get,

LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}$

Now, we can divide $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in numerator and similarly, $\cos {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ and $\sin {{9}^{\circ }}$ by $\cos {{9}^{\circ }}$ in denominator as well. We get,

LHS = $\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)$

We have trigonometric identity,

$\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)$

Hence, equation (ii) can be simplified as

LHS = $\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}$

As we know, $\tan {{45}^{\circ }}=1$ , so above equation can be written as

LHS = $\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)$

Now, using trigonometric identity,

$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}$

Hence equation (iv) can be rewritten with the help of the above equation. So, we get

LHS = $\tan \left( 45+9 \right)=\tan {{54}^{\circ }}$

Now, we can use relation $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $ to convert the ‘tan’ function to ‘cot’.

Hence, LHS can be given as

LHS = $\tan \left( 90-36 \right)=\cot {{36}^{\circ }}$

Therefore, LHS = RHS = $\cot {{36}^{\circ }}$

Hence proved the given relation

Note: Another approach for the given question would be to use trigonometric identities

$\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}$

$\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}$

Use relation $\cos \theta =\sin \left( 90-\theta \right)$

So, LHS = $\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}$

One can go wrong while converting $\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45}$ to $\tan {{54}^{\circ }}$ .

He or she may confuse between formula tan(A-B) and tan(A+B).

Last updated date: 29th Sep 2023

•

Total views: 363.9k

•

Views today: 8.63k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Who had given the title of Mahatma to Gandhi Ji A Bal class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How many millions make a billion class 6 maths CBSE

Find the value of the expression given below sin 30circ class 11 maths CBSE