
Prove the following trigonometric equation:
\[\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3\]
Answer
609.9k+ views
Hint: First of all, as we know that we can substitute \[{{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right)\] and \[{{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right)\]. Then use the formula of \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\] and \[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}\].
The expression in the question to be proved is given as
\[\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3\]
Let us consider the LHS of the given expression as below,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\sqrt{3}.\tan {{80}^{o}}\]
We can also write the above expression as
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{80}^{o}}\]
Now, we can know that \[{{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right)\] and \[{{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right)\].
So, we get the above expression as,
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan \left( {{60}^{o}}-{{20}^{o}} \right).\tan \left( {{60}^{o}}+{{20}^{o}} \right)\]
Since, we know that
\[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}\]
And,
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}\]
Therefore, by applying the above formulas, we get the above expression as
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\tan {{60}^{o}}-\tan {{20}^{o}}}{1+\tan {{60}^{o}}.\tan {{20}^{o}}} \right].\left[ \dfrac{\tan {{60}^{o}}+\tan {{20}^{o}}}{1-\tan {{60}^{o}}\tan {{20}^{o}}} \right]\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\sqrt{3}-\tan {{20}^{o}}}{1+\sqrt{3}.\tan {{20}^{o}}} \right].\left[ \dfrac{\sqrt{3}+\tan {{20}^{o}}}{1-\sqrt{3}\tan {{20}^{o}}} \right]\]
We can also write the above expression as,
\[A=\dfrac{\sqrt{3}\tan {{20}^{o}}.\left( \sqrt{3}-\tan {{20}^{o}} \right)\left( \sqrt{3}+\tan {{20}^{o}} \right)}{\left( 1-\sqrt{3}.\tan {{20}^{o}} \right)\left( 1+\sqrt{3}\tan {{20}^{o}} \right)}\]
Since we know that
\[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Therefore, by applying this formula in the above expression, we get,
\[A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \tan {{20}^{o}} \right)}^{2}}}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}\tan {{20}^{o}} \right)}^{2}}} \right]\]
By simplifying the above equation, we get,
\[\Rightarrow A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{3-{{\tan }^{2}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Now, we will take \[\tan {{20}^{o}}\] inside the bracket
We get,
\[\Rightarrow A=\sqrt{3}\left[ \dfrac{3\tan {{20}^{o}}-{{\tan }^{3}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Since, we know that
\[\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }=\tan 3\theta \]
Therefore, by applying the above formula, we get,
\[A=\sqrt{3}\left[ \tan 3.\left( {{20}^{o}} \right) \right]\]
We can also write the above expression as
\[A=\sqrt{3}\left[ \tan {{60}^{o}} \right]\]
Since, we know that \[\tan {{60}^{o}}=\sqrt{3}\], therefore by putting the value of \[\tan {{60}^{o}}\] in the above expression we get,
\[A=\sqrt{3}.\sqrt{3}\]
Therefore, A = 3 = RHS
Hence, we proved that the value of \[\tan {{20}^{o}}\tan {{40}^{o}}\tan {{60}^{o}}\tan {{80}^{o}}=3\].
Note: Here by looking at the terms like \[\tan {{20}^{o}},\tan {{40}^{o}}\] and \[\tan {{60}^{o}}\], students often make this mistake of using formulas of double angles that is \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\] which makes the solution lengthy and does not lead to the desired result.
The expression in the question to be proved is given as
\[\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3\]
Let us consider the LHS of the given expression as below,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\sqrt{3}.\tan {{80}^{o}}\]
We can also write the above expression as
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{80}^{o}}\]
Now, we can know that \[{{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right)\] and \[{{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right)\].
So, we get the above expression as,
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan \left( {{60}^{o}}-{{20}^{o}} \right).\tan \left( {{60}^{o}}+{{20}^{o}} \right)\]
Since, we know that
\[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}\]
And,
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}\]
Therefore, by applying the above formulas, we get the above expression as
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\tan {{60}^{o}}-\tan {{20}^{o}}}{1+\tan {{60}^{o}}.\tan {{20}^{o}}} \right].\left[ \dfrac{\tan {{60}^{o}}+\tan {{20}^{o}}}{1-\tan {{60}^{o}}\tan {{20}^{o}}} \right]\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\sqrt{3}-\tan {{20}^{o}}}{1+\sqrt{3}.\tan {{20}^{o}}} \right].\left[ \dfrac{\sqrt{3}+\tan {{20}^{o}}}{1-\sqrt{3}\tan {{20}^{o}}} \right]\]
We can also write the above expression as,
\[A=\dfrac{\sqrt{3}\tan {{20}^{o}}.\left( \sqrt{3}-\tan {{20}^{o}} \right)\left( \sqrt{3}+\tan {{20}^{o}} \right)}{\left( 1-\sqrt{3}.\tan {{20}^{o}} \right)\left( 1+\sqrt{3}\tan {{20}^{o}} \right)}\]
Since we know that
\[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Therefore, by applying this formula in the above expression, we get,
\[A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \tan {{20}^{o}} \right)}^{2}}}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}\tan {{20}^{o}} \right)}^{2}}} \right]\]
By simplifying the above equation, we get,
\[\Rightarrow A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{3-{{\tan }^{2}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Now, we will take \[\tan {{20}^{o}}\] inside the bracket
We get,
\[\Rightarrow A=\sqrt{3}\left[ \dfrac{3\tan {{20}^{o}}-{{\tan }^{3}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Since, we know that
\[\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }=\tan 3\theta \]
Therefore, by applying the above formula, we get,
\[A=\sqrt{3}\left[ \tan 3.\left( {{20}^{o}} \right) \right]\]
We can also write the above expression as
\[A=\sqrt{3}\left[ \tan {{60}^{o}} \right]\]
Since, we know that \[\tan {{60}^{o}}=\sqrt{3}\], therefore by putting the value of \[\tan {{60}^{o}}\] in the above expression we get,
\[A=\sqrt{3}.\sqrt{3}\]
Therefore, A = 3 = RHS
Hence, we proved that the value of \[\tan {{20}^{o}}\tan {{40}^{o}}\tan {{60}^{o}}\tan {{80}^{o}}=3\].
Note: Here by looking at the terms like \[\tan {{20}^{o}},\tan {{40}^{o}}\] and \[\tan {{60}^{o}}\], students often make this mistake of using formulas of double angles that is \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\] which makes the solution lengthy and does not lead to the desired result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

