
Prove the following trigonometric equation :
${{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
Answer
614.4k+ views
Hint: In order to solve such types of problems, we must keep one thing in our mind that how can we arrange the terms so that we can apply available trigonometric formulas then expression will automatically start to get reduced.
Complete step-by-step answer:
$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common
$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On taking ${\text{cos}}({\text{A - B}})$ term common,
$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)
We know that.
\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$
On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$
On rearranging minus sign, try to make any formula of cos
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$
On taking minus sign common from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$
We can take this minus sign out from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)
We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)
$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)
We know that.
\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$
Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$
So on using Difference of two squares formula
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$
On further solving
\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common
\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use
\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression
\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\sin ^2}({\text{A}})$ term common
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]
Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]
\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]
Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.
Complete step-by-step answer:
$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common
$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On taking ${\text{cos}}({\text{A - B}})$ term common,
$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)
We know that.
\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$
On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$
On rearranging minus sign, try to make any formula of cos
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$
On taking minus sign common from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$
We can take this minus sign out from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)
We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)
$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)
We know that.
\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$
Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$
So on using Difference of two squares formula
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$
On further solving
\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common
\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use
\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression
\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\sin ^2}({\text{A}})$ term common
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]
Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]
\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]
Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Show that total energy of a freely falling body remains class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

How many quintals are there in one metric ton A 10 class 11 physics CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

