# Prove the following trigonometric equation :

${{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

Answer

Verified

324.9k+ views

Hint: In order to solve such types of problems, we must keep one thing in our mind that how can we arrange the terms so that we can apply available trigonometric formulas then expression will automatically start to get reduced.

Complete step-by-step answer:

$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common

$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On taking ${\text{cos}}({\text{A - B}})$ term common,

$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)

We know that.

\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$

On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$

On rearranging minus sign, try to make any formula of cos

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$

On taking minus sign common from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$

We can take this minus sign out from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)

We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)

$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)

We know that.

\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$

In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$

Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$

So on using Difference of two squares formula

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$

On further solving

\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common

\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use

\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression

\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\sin ^2}({\text{A}})$ term common

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]

Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]

\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]

Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.

Complete step-by-step answer:

$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common

$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On taking ${\text{cos}}({\text{A - B}})$ term common,

$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)

We know that.

\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$

On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$

On rearranging minus sign, try to make any formula of cos

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$

On taking minus sign common from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$

We can take this minus sign out from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)

We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)

$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)

We know that.

\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$

In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$

Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$

So on using Difference of two squares formula

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$

On further solving

\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common

\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use

\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression

\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\sin ^2}({\text{A}})$ term common

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]

Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]

\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]

Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.

Last updated date: 25th May 2023

â€¢

Total views: 324.9k

â€¢

Views today: 6.83k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE