
Prove the following trigonometric equation :
${{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
Answer
601.5k+ views
Hint: In order to solve such types of problems, we must keep one thing in our mind that how can we arrange the terms so that we can apply available trigonometric formulas then expression will automatically start to get reduced.
Complete step-by-step answer:
$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common
$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On taking ${\text{cos}}({\text{A - B}})$ term common,
$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)
We know that.
\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$
On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$
On rearranging minus sign, try to make any formula of cos
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$
On taking minus sign common from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$
We can take this minus sign out from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)
We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)
$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)
We know that.
\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$
Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$
So on using Difference of two squares formula
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$
On further solving
\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common
\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use
\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression
\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\sin ^2}({\text{A}})$ term common
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]
Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]
\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]
Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.
Complete step-by-step answer:
$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common
$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$
On taking ${\text{cos}}({\text{A - B}})$ term common,
$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)
We know that.
\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$
On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$
On rearranging minus sign, try to make any formula of cos
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$
On taking minus sign common from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$
We can take this minus sign out from 2nd bracket
$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)
We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)
$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)
We know that.
\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]
\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]
On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$
In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$
Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$
So on using Difference of two squares formula
$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$
On further solving
\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common
\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use
\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression
\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]
On taking the ${\sin ^2}({\text{A}})$ term common
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]
Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$
\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]
\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]
Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

