# Prove the following trigonometric equation :

${{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

Answer

Verified

380.1k+ views

Hint: In order to solve such types of problems, we must keep one thing in our mind that how can we arrange the terms so that we can apply available trigonometric formulas then expression will automatically start to get reduced.

Complete step-by-step answer:

$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common

$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On taking ${\text{cos}}({\text{A - B}})$ term common,

$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)

We know that.

\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$

On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$

On rearranging minus sign, try to make any formula of cos

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$

On taking minus sign common from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$

We can take this minus sign out from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)

We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)

$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)

We know that.

\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$

In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$

Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$

So on using Difference of two squares formula

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$

On further solving

\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common

\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use

\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression

\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\sin ^2}({\text{A}})$ term common

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]

Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]

\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]

Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.

Complete step-by-step answer:

$ \Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On writing ${\text{co}}{{\text{s}}^2}{\text{B}}$ term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking ${\text{cos}}({\text{A - B}})$ term common

$ \Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}$

On taking ${\text{cos}}({\text{A - B}})$ term common,

$ \Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right)$ --- (1)

We know that.

\[ \Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

So on putting the value of ${\text{cos}}({\text{A - B}})$ in expression (1)

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)$

On subtracting ${\text{cos}}({\text{A)cos (B)}}$ term we get

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)$

On rearranging minus sign, try to make any formula of cos

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)$

On taking minus sign common from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)$

We can take this minus sign out from 2nd bracket

$ \Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right)$ --- (2)

We know the formula of ${\text{cos}}({\text{A + B}})$ so here we can use that

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

So using the formula of ${\text{cos}}({\text{A + B}})$ in expression (2)

$ \Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}}$ --- (3)

We know that.

\[ {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}\]

\[ {\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}\]

On using above results of ${\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}})$ in expression (3)

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)$

In algebra, there is a formula known as the Difference of two squares:$({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})$

Here, ${\text{m = cosAcosB}}$ ${\text{ & n = sinAsinB}}$

So on using Difference of two squares formula

$ \Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)$

On further solving

\[ \Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\text{co}}{{\text{s}}^2}({\text{B}})$ term common

\[ \Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

We know the formula of ${\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }}$ so here we can use

\[{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}}\] in above expression

\[ \Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}\]

On taking the ${\sin ^2}({\text{A}})$ term common

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)\]

Again using ${\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}$

\[ \Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)\]

\[ \Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}\]

Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE