
Prove the following trigonometric equation
\[\cos {24^ \circ } + \cos {55^ \circ } + \cos {125^ \circ } + \cos {204^ \circ } + \cos {300^ \circ } = \dfrac{1}{2}\]
Answer
624.3k+ views
Hint: - Break the angles as a sum of other angles with multiples of \[{90^ \circ }\].
Taking the L.H.S.
$ \Rightarrow \cos {24^ \circ } + \cos {55^ \circ } + \cos {125^ \circ } + \cos {204^ \circ } + \cos {300^ \circ }$ --- (1)
As we know that
$\left[ {\begin{array}{*{20}{c}}
{\cos \left( {{{180}^ \circ } - {\theta ^ \circ }} \right) = - \cos {\theta ^ \circ }} \\
{\cos \left( {{{180}^ \circ } + {\theta ^ \circ }} \right) = - \cos {\theta ^ \circ }} \\
{\cos \left( {{{360}^ \circ } - {\theta ^ \circ }} \right) = \cos {\theta ^ \circ }}
\end{array}} \right]$
So we have:
\[
\cos {125^ \circ } = \cos \left( {{{180}^ \circ } - {{55}^ \circ }} \right) = - \cos {55^ \circ } \\
\cos {204^ \circ } = \cos \left( {{{180}^ \circ } + {{24}^ \circ }} \right) = - \cos {24^ \circ } \\
\cos {300^ \circ } = \cos \left( {{{360}^ \circ } - {{60}^ \circ }} \right) = \cos {60^ \circ } \\
\]
Putting these values in equation (1) we get,
\[
\Rightarrow \cos {24^ \circ } + \cos {55^ \circ } - \cos {55^ \circ } - \cos {24^ \circ } + \cos {60^ \circ } \\
\Rightarrow \cos {60^ \circ } \\
\Rightarrow \dfrac{1}{2} = R.H.S. \\
\]
Hence the equation is proved.
Note - The following problem can also be solved by putting in the values of each of the terms, but it is easier to solve the problem by breaking the angles as a sum of other angles with multiple of \[{90^ \circ }\]. Also some of the common trigonometric identities must be remembered.
Taking the L.H.S.
$ \Rightarrow \cos {24^ \circ } + \cos {55^ \circ } + \cos {125^ \circ } + \cos {204^ \circ } + \cos {300^ \circ }$ --- (1)
As we know that
$\left[ {\begin{array}{*{20}{c}}
{\cos \left( {{{180}^ \circ } - {\theta ^ \circ }} \right) = - \cos {\theta ^ \circ }} \\
{\cos \left( {{{180}^ \circ } + {\theta ^ \circ }} \right) = - \cos {\theta ^ \circ }} \\
{\cos \left( {{{360}^ \circ } - {\theta ^ \circ }} \right) = \cos {\theta ^ \circ }}
\end{array}} \right]$
So we have:
\[
\cos {125^ \circ } = \cos \left( {{{180}^ \circ } - {{55}^ \circ }} \right) = - \cos {55^ \circ } \\
\cos {204^ \circ } = \cos \left( {{{180}^ \circ } + {{24}^ \circ }} \right) = - \cos {24^ \circ } \\
\cos {300^ \circ } = \cos \left( {{{360}^ \circ } - {{60}^ \circ }} \right) = \cos {60^ \circ } \\
\]
Putting these values in equation (1) we get,
\[
\Rightarrow \cos {24^ \circ } + \cos {55^ \circ } - \cos {55^ \circ } - \cos {24^ \circ } + \cos {60^ \circ } \\
\Rightarrow \cos {60^ \circ } \\
\Rightarrow \dfrac{1}{2} = R.H.S. \\
\]
Hence the equation is proved.
Note - The following problem can also be solved by putting in the values of each of the terms, but it is easier to solve the problem by breaking the angles as a sum of other angles with multiple of \[{90^ \circ }\]. Also some of the common trigonometric identities must be remembered.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

