Answer

Verified

432.9k+ views

Hint: The given question is related to trigonometric identities. Here use the formulae related to the relation between tangent and cotangent of an angle.

Complete step-by-step answer:

We need to prove that the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ is equal to $1$ .

First, we will consider the left-hand side of the equation which is given as $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as $\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)$ .

So, the left-hand side of the equation becomes \[\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\].

$=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}$

Now, we will open the brackets and multiply the terms in the denominator. So, we get:

$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)$

Now, we know that $\cot A=\dfrac{1}{\tan A}$ . So, $\cot A\tan A=1$ . Hence, ${{\cot }^{2}}A{{\tan }^{2}}A=1$.

Now, we will substitute ${{\cot }^{2}}A{{\tan }^{2}}A=1$ in equation $(i)$. So, we get: $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}$. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to $1$ . So, the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ will be equal to $1$, i.e.

$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.

Hence, the value of the left-hand side of the equation is equal to $1$.

Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to $1$.

LHS=RHS. Hence, proved.

Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.

Complete step-by-step answer:

We need to prove that the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ is equal to $1$ .

First, we will consider the left-hand side of the equation which is given as $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as $\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)$ .

So, the left-hand side of the equation becomes \[\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\].

$=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}$

Now, we will open the brackets and multiply the terms in the denominator. So, we get:

$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)$

Now, we know that $\cot A=\dfrac{1}{\tan A}$ . So, $\cot A\tan A=1$ . Hence, ${{\cot }^{2}}A{{\tan }^{2}}A=1$.

Now, we will substitute ${{\cot }^{2}}A{{\tan }^{2}}A=1$ in equation $(i)$. So, we get: $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}$. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to $1$ . So, the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ will be equal to $1$, i.e.

$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.

Hence, the value of the left-hand side of the equation is equal to $1$.

Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to $1$.

LHS=RHS. Hence, proved.

Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE