Answer
Verified
467.7k+ views
Hint: The given question is related to trigonometric identities. Here use the formulae related to the relation between tangent and cotangent of an angle.
Complete step-by-step answer:
We need to prove that the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ is equal to $1$ .
First, we will consider the left-hand side of the equation which is given as $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as $\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)$ .
So, the left-hand side of the equation becomes \[\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\].
$=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}$
Now, we will open the brackets and multiply the terms in the denominator. So, we get:
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)$
Now, we know that $\cot A=\dfrac{1}{\tan A}$ . So, $\cot A\tan A=1$ . Hence, ${{\cot }^{2}}A{{\tan }^{2}}A=1$.
Now, we will substitute ${{\cot }^{2}}A{{\tan }^{2}}A=1$ in equation $(i)$. So, we get: $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}$. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to $1$ . So, the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ will be equal to $1$, i.e.
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.
Hence, the value of the left-hand side of the equation is equal to $1$.
Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to $1$.
LHS=RHS. Hence, proved.
Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.
Complete step-by-step answer:
We need to prove that the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ is equal to $1$ .
First, we will consider the left-hand side of the equation which is given as $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as $\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)$ .
So, the left-hand side of the equation becomes \[\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}\].
$=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}$
Now, we will open the brackets and multiply the terms in the denominator. So, we get:
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)$
Now, we know that $\cot A=\dfrac{1}{\tan A}$ . So, $\cot A\tan A=1$ . Hence, ${{\cot }^{2}}A{{\tan }^{2}}A=1$.
Now, we will substitute ${{\cot }^{2}}A{{\tan }^{2}}A=1$ in equation $(i)$. So, we get: $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}$. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to $1$ . So, the value of $\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}$ will be equal to $1$, i.e.
$\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1$.
Hence, the value of the left-hand side of the equation is equal to $1$.
Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to $1$.
LHS=RHS. Hence, proved.
Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE