
Prove the following trigonometric equation
$\dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}} = 1 + \sin \theta $
Answer
607.2k+ views
Hint: For solving such equations use general trigonometric identities of angle transformation such as $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $ and proceed further by simplifying the equation.
Given that
$\dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}} = 1 + \sin \theta $
We proceed further by taking the LHS side
$ = \dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}}$
As we know that
$
\sin \left( {{{90}^0} - \theta } \right) = \cos \theta \\
\cos ec\left( {{{90}^0} - \theta } \right) = \sec \theta \\
\cot \left( {{{90}^0} - \theta } \right) = \tan \theta \\
$
So after substituting these terms in given equation we get
$ \Rightarrow \dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}} = \dfrac{{\cos \theta }}{{\sec \theta - \tan \theta }}$
Since we need the RHS in terms of $\sin \theta $ so, we will substitute the value of $\sec \theta \& \tan \theta $ in terms of $\sin \theta \& \cos \theta $ .
$\because \sec \theta = \dfrac{1}{{\cos \theta }}\& \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
After putting the value of $\sec \theta \& \tan \theta $ in the given equation, we obtain
$
\Rightarrow \dfrac{{\cos \theta }}{{\sec \theta - \tan \theta }} = \dfrac{{\cos \theta }}{{\dfrac{1}{{\cos \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}}} \\
= \dfrac{{\cos \theta }}{{\dfrac{{1 - \sin \theta }}{{\cos \theta }}}} \\
= \dfrac{{{{\cos }^2}\theta }}{{1 - \sin \theta }} \\
$
As we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$
\Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \\
= \left( {1 + \sin \theta } \right)\left( {1 - \sin \theta } \right)\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right] \\
$
Substituting in the given term, we have
$
\Rightarrow \dfrac{{{{\cos }^2}\theta }}{{1 - \sin \theta }} = \dfrac{{\left( {1 + \sin \theta } \right)\left( {1 - \sin \theta } \right)}}{{1 - \sin \theta }} \\
= \left( {1 + \sin \theta } \right) \\
$
This is the same as RHS.
Hence the equation is proved.
Note: In order to solve such questions involving different trigonometric terms always first try to simplify the angle of the terms and then use trigonometric terms to further simplify the terms. In order to fetch the result on the other side or to prove some terms, always keep in mind the terms on the other side while making any substitution as some substitution may further make the term complex.
Given that
$\dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}} = 1 + \sin \theta $
We proceed further by taking the LHS side
$ = \dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}}$
As we know that
$
\sin \left( {{{90}^0} - \theta } \right) = \cos \theta \\
\cos ec\left( {{{90}^0} - \theta } \right) = \sec \theta \\
\cot \left( {{{90}^0} - \theta } \right) = \tan \theta \\
$
So after substituting these terms in given equation we get
$ \Rightarrow \dfrac{{\sin \left( {{{90}^0} - \theta } \right)}}{{\cos ec\left( {{{90}^0} - \theta } \right) - \cot \left( {{{90}^0} - \theta } \right)}} = \dfrac{{\cos \theta }}{{\sec \theta - \tan \theta }}$
Since we need the RHS in terms of $\sin \theta $ so, we will substitute the value of $\sec \theta \& \tan \theta $ in terms of $\sin \theta \& \cos \theta $ .
$\because \sec \theta = \dfrac{1}{{\cos \theta }}\& \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
After putting the value of $\sec \theta \& \tan \theta $ in the given equation, we obtain
$
\Rightarrow \dfrac{{\cos \theta }}{{\sec \theta - \tan \theta }} = \dfrac{{\cos \theta }}{{\dfrac{1}{{\cos \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}}} \\
= \dfrac{{\cos \theta }}{{\dfrac{{1 - \sin \theta }}{{\cos \theta }}}} \\
= \dfrac{{{{\cos }^2}\theta }}{{1 - \sin \theta }} \\
$
As we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$
\Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \\
= \left( {1 + \sin \theta } \right)\left( {1 - \sin \theta } \right)\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right] \\
$
Substituting in the given term, we have
$
\Rightarrow \dfrac{{{{\cos }^2}\theta }}{{1 - \sin \theta }} = \dfrac{{\left( {1 + \sin \theta } \right)\left( {1 - \sin \theta } \right)}}{{1 - \sin \theta }} \\
= \left( {1 + \sin \theta } \right) \\
$
This is the same as RHS.
Hence the equation is proved.
Note: In order to solve such questions involving different trigonometric terms always first try to simplify the angle of the terms and then use trigonometric terms to further simplify the terms. In order to fetch the result on the other side or to prove some terms, always keep in mind the terms on the other side while making any substitution as some substitution may further make the term complex.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

