Prove the following relation.
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Last updated date: 23rd Mar 2023
•
Total views: 307.2k
•
Views today: 5.88k
Answer
307.2k+ views
Hint: Separate the given determinant into two parts by splitting the middle column, that is, write \[{{a}^{2}},{{b}^{2}},{{c}^{2}}\] and \[{{\left( b-c \right)}^{2}},{{\left( c-a \right)}^{2}},{{\left( a-b \right)}^{2}}\] in different determinants. Then use operations \[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]and then proceed.
Here, we have to prove that
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Let us consider the given determinant as,
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
Since, we know that
\[\left| \begin{matrix}
x & a-b & m \\
y & c-d & n \\
z & e-f & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
x & a & m \\
y & c & n \\
z & e & 0 \\
\end{matrix} \right|-\left| \begin{matrix}
x & b & m \\
y & d & n \\
z & f & 0 \\
\end{matrix} \right|\]
Therefore, we can apply it to the determinant in the question, D as shown below.
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}} & ab \\
\end{matrix} \right|-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that if any two rows or any two columns of determinant is identical, then the value of determinant is zero.
Therefore, we get
\[D=0-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
Therefore, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]
We will get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc+2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca+2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab+2ab & ab \\
\end{matrix} \right|\]
By cancelling like terms and simplifying, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}\]
So, we will get
\[D=-\left| \begin{matrix}
{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}}+{{c}^{2}}+{{a}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}}+{{a}^{2}}+{{b}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
By taking \[\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\] common from \[{{R}_{1}}\], we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1 & {{b}^{2}}+{{c}^{2}} & bc \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1 & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\]
And, \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\]
We will get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1-1 & \left( {{b}^{2}}+{{c}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & bc-ca \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1-1 & \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & ab-ca \\
\end{matrix} \right|\]
\[\Rightarrow D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & {{b}^{2}}-{{a}^{2}} & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & {{b}^{2}}-{{c}^{2}} & a\left( b-c \right) \\
\end{matrix} \right|\]
Since, we know that \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)\], we can apply it to the above determinant and we will get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & \left( b-a \right)\left( b+a \right) & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & \left( b-c \right)\left( b+c \right) & a\left( b-c \right) \\
\end{matrix} \right|\]
By taking \[\left( b-a \right)\] and \[\left( b-c \right)\] common from \[{{R}_{1}}\] and \[{{R}_{3}}\] respectively, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Let,
\[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Therefore, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right).\Delta ....\left( i \right)\]
We know that determinant value of
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-d\left( bi-hc \right)+g\left( bf-ec \right)\]
Therefore determinant value of \[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\] is
\[0\left[ \left( {{c}^{2}}+{{a}^{2}} \right)\left( a \right)-\left( ca \right)\left( b+c \right) \right]-1\left[ \left( b+a \right)\left( a \right)-\left( c \right)\left( b+c \right) \right]+0\left[ \left( b+a \right)\left( ca \right)-c\left( {{c}^{2}}+{{a}^{2}} \right) \right]\]
Therefore, we get
\[\Delta =0-\left[ \left( ab+{{a}^{2}} \right)-\left( cb+{{c}^{2}} \right) \right]+0\]
\[\Rightarrow \Delta ={{c}^{2}}+bc-ab-{{a}^{2}}\]
We know that
\[{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)\]
Therefore, we get
\[\Delta =\left( c-a \right)\left( c+a \right)+b\left( c-a \right)\]
By taking \[\left( c-a \right)\] common, we get
\[\Delta =\left( c-a \right)\left( c+a+b \right)\]
By putting the value of \[\Delta \] in equation (i), we get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left( c-a \right)\left( c+a+b \right)\]
Or, \[D=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right)\]
Hence Proved.
Note: In these types of questions, always try to first take out the common terms which are the same as terms in RHS, then try to make the terms of each row or column equal to 0 to easily find the determinant value.
Here, we have to prove that
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Let us consider the given determinant as,
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
Since, we know that
\[\left| \begin{matrix}
x & a-b & m \\
y & c-d & n \\
z & e-f & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
x & a & m \\
y & c & n \\
z & e & 0 \\
\end{matrix} \right|-\left| \begin{matrix}
x & b & m \\
y & d & n \\
z & f & 0 \\
\end{matrix} \right|\]
Therefore, we can apply it to the determinant in the question, D as shown below.
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}} & ab \\
\end{matrix} \right|-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that if any two rows or any two columns of determinant is identical, then the value of determinant is zero.
Therefore, we get
\[D=0-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
Therefore, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]
We will get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc+2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca+2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab+2ab & ab \\
\end{matrix} \right|\]
By cancelling like terms and simplifying, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}\]
So, we will get
\[D=-\left| \begin{matrix}
{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}}+{{c}^{2}}+{{a}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}}+{{a}^{2}}+{{b}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
By taking \[\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\] common from \[{{R}_{1}}\], we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1 & {{b}^{2}}+{{c}^{2}} & bc \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1 & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\]
And, \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\]
We will get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1-1 & \left( {{b}^{2}}+{{c}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & bc-ca \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1-1 & \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & ab-ca \\
\end{matrix} \right|\]
\[\Rightarrow D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & {{b}^{2}}-{{a}^{2}} & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & {{b}^{2}}-{{c}^{2}} & a\left( b-c \right) \\
\end{matrix} \right|\]
Since, we know that \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)\], we can apply it to the above determinant and we will get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & \left( b-a \right)\left( b+a \right) & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & \left( b-c \right)\left( b+c \right) & a\left( b-c \right) \\
\end{matrix} \right|\]
By taking \[\left( b-a \right)\] and \[\left( b-c \right)\] common from \[{{R}_{1}}\] and \[{{R}_{3}}\] respectively, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Let,
\[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Therefore, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right).\Delta ....\left( i \right)\]
We know that determinant value of
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-d\left( bi-hc \right)+g\left( bf-ec \right)\]
Therefore determinant value of \[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\] is
\[0\left[ \left( {{c}^{2}}+{{a}^{2}} \right)\left( a \right)-\left( ca \right)\left( b+c \right) \right]-1\left[ \left( b+a \right)\left( a \right)-\left( c \right)\left( b+c \right) \right]+0\left[ \left( b+a \right)\left( ca \right)-c\left( {{c}^{2}}+{{a}^{2}} \right) \right]\]
Therefore, we get
\[\Delta =0-\left[ \left( ab+{{a}^{2}} \right)-\left( cb+{{c}^{2}} \right) \right]+0\]
\[\Rightarrow \Delta ={{c}^{2}}+bc-ab-{{a}^{2}}\]
We know that
\[{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)\]
Therefore, we get
\[\Delta =\left( c-a \right)\left( c+a \right)+b\left( c-a \right)\]
By taking \[\left( c-a \right)\] common, we get
\[\Delta =\left( c-a \right)\left( c+a+b \right)\]
By putting the value of \[\Delta \] in equation (i), we get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left( c-a \right)\left( c+a+b \right)\]
Or, \[D=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right)\]
Hence Proved.
Note: In these types of questions, always try to first take out the common terms which are the same as terms in RHS, then try to make the terms of each row or column equal to 0 to easily find the determinant value.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
