
Prove the following relation.
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Answer
621.9k+ views
Hint: Separate the given determinant into two parts by splitting the middle column, that is, write \[{{a}^{2}},{{b}^{2}},{{c}^{2}}\] and \[{{\left( b-c \right)}^{2}},{{\left( c-a \right)}^{2}},{{\left( a-b \right)}^{2}}\] in different determinants. Then use operations \[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]and then proceed.
Here, we have to prove that
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Let us consider the given determinant as,
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
Since, we know that
\[\left| \begin{matrix}
x & a-b & m \\
y & c-d & n \\
z & e-f & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
x & a & m \\
y & c & n \\
z & e & 0 \\
\end{matrix} \right|-\left| \begin{matrix}
x & b & m \\
y & d & n \\
z & f & 0 \\
\end{matrix} \right|\]
Therefore, we can apply it to the determinant in the question, D as shown below.
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}} & ab \\
\end{matrix} \right|-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that if any two rows or any two columns of determinant is identical, then the value of determinant is zero.
Therefore, we get
\[D=0-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
Therefore, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]
We will get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc+2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca+2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab+2ab & ab \\
\end{matrix} \right|\]
By cancelling like terms and simplifying, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}\]
So, we will get
\[D=-\left| \begin{matrix}
{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}}+{{c}^{2}}+{{a}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}}+{{a}^{2}}+{{b}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
By taking \[\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\] common from \[{{R}_{1}}\], we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1 & {{b}^{2}}+{{c}^{2}} & bc \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1 & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\]
And, \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\]
We will get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1-1 & \left( {{b}^{2}}+{{c}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & bc-ca \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1-1 & \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & ab-ca \\
\end{matrix} \right|\]
\[\Rightarrow D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & {{b}^{2}}-{{a}^{2}} & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & {{b}^{2}}-{{c}^{2}} & a\left( b-c \right) \\
\end{matrix} \right|\]
Since, we know that \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)\], we can apply it to the above determinant and we will get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & \left( b-a \right)\left( b+a \right) & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & \left( b-c \right)\left( b+c \right) & a\left( b-c \right) \\
\end{matrix} \right|\]
By taking \[\left( b-a \right)\] and \[\left( b-c \right)\] common from \[{{R}_{1}}\] and \[{{R}_{3}}\] respectively, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Let,
\[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Therefore, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right).\Delta ....\left( i \right)\]
We know that determinant value of
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-d\left( bi-hc \right)+g\left( bf-ec \right)\]
Therefore determinant value of \[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\] is
\[0\left[ \left( {{c}^{2}}+{{a}^{2}} \right)\left( a \right)-\left( ca \right)\left( b+c \right) \right]-1\left[ \left( b+a \right)\left( a \right)-\left( c \right)\left( b+c \right) \right]+0\left[ \left( b+a \right)\left( ca \right)-c\left( {{c}^{2}}+{{a}^{2}} \right) \right]\]
Therefore, we get
\[\Delta =0-\left[ \left( ab+{{a}^{2}} \right)-\left( cb+{{c}^{2}} \right) \right]+0\]
\[\Rightarrow \Delta ={{c}^{2}}+bc-ab-{{a}^{2}}\]
We know that
\[{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)\]
Therefore, we get
\[\Delta =\left( c-a \right)\left( c+a \right)+b\left( c-a \right)\]
By taking \[\left( c-a \right)\] common, we get
\[\Delta =\left( c-a \right)\left( c+a+b \right)\]
By putting the value of \[\Delta \] in equation (i), we get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left( c-a \right)\left( c+a+b \right)\]
Or, \[D=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right)\]
Hence Proved.
Note: In these types of questions, always try to first take out the common terms which are the same as terms in RHS, then try to make the terms of each row or column equal to 0 to easily find the determinant value.
Here, we have to prove that
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Let us consider the given determinant as,
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
Since, we know that
\[\left| \begin{matrix}
x & a-b & m \\
y & c-d & n \\
z & e-f & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
x & a & m \\
y & c & n \\
z & e & 0 \\
\end{matrix} \right|-\left| \begin{matrix}
x & b & m \\
y & d & n \\
z & f & 0 \\
\end{matrix} \right|\]
Therefore, we can apply it to the determinant in the question, D as shown below.
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}} & ab \\
\end{matrix} \right|-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that if any two rows or any two columns of determinant is identical, then the value of determinant is zero.
Therefore, we get
\[D=0-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
Therefore, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]
We will get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc+2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca+2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab+2ab & ab \\
\end{matrix} \right|\]
By cancelling like terms and simplifying, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}\]
So, we will get
\[D=-\left| \begin{matrix}
{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}}+{{c}^{2}}+{{a}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}}+{{a}^{2}}+{{b}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
By taking \[\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\] common from \[{{R}_{1}}\], we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1 & {{b}^{2}}+{{c}^{2}} & bc \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1 & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\]
And, \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\]
We will get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1-1 & \left( {{b}^{2}}+{{c}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & bc-ca \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1-1 & \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & ab-ca \\
\end{matrix} \right|\]
\[\Rightarrow D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & {{b}^{2}}-{{a}^{2}} & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & {{b}^{2}}-{{c}^{2}} & a\left( b-c \right) \\
\end{matrix} \right|\]
Since, we know that \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)\], we can apply it to the above determinant and we will get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & \left( b-a \right)\left( b+a \right) & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & \left( b-c \right)\left( b+c \right) & a\left( b-c \right) \\
\end{matrix} \right|\]
By taking \[\left( b-a \right)\] and \[\left( b-c \right)\] common from \[{{R}_{1}}\] and \[{{R}_{3}}\] respectively, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Let,
\[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Therefore, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right).\Delta ....\left( i \right)\]
We know that determinant value of
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-d\left( bi-hc \right)+g\left( bf-ec \right)\]
Therefore determinant value of \[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\] is
\[0\left[ \left( {{c}^{2}}+{{a}^{2}} \right)\left( a \right)-\left( ca \right)\left( b+c \right) \right]-1\left[ \left( b+a \right)\left( a \right)-\left( c \right)\left( b+c \right) \right]+0\left[ \left( b+a \right)\left( ca \right)-c\left( {{c}^{2}}+{{a}^{2}} \right) \right]\]
Therefore, we get
\[\Delta =0-\left[ \left( ab+{{a}^{2}} \right)-\left( cb+{{c}^{2}} \right) \right]+0\]
\[\Rightarrow \Delta ={{c}^{2}}+bc-ab-{{a}^{2}}\]
We know that
\[{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)\]
Therefore, we get
\[\Delta =\left( c-a \right)\left( c+a \right)+b\left( c-a \right)\]
By taking \[\left( c-a \right)\] common, we get
\[\Delta =\left( c-a \right)\left( c+a+b \right)\]
By putting the value of \[\Delta \] in equation (i), we get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left( c-a \right)\left( c+a+b \right)\]
Or, \[D=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right)\]
Hence Proved.
Note: In these types of questions, always try to first take out the common terms which are the same as terms in RHS, then try to make the terms of each row or column equal to 0 to easily find the determinant value.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

