Answer
Verified
493.5k+ views
Hint: First of all, find the expression for \[{{x}^{2}}\] and \[{{y}^{2}}\] by using the formula \[{{\left( p+q\right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. Then take the difference that \[{{x}^{2}}-{{y}^{2}}\]. Then use identity \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] to prove the desired result.
Complete step by step solution:
We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to
prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Let us first consider the expression for x given in the question.
\[x=asec\theta +b\tan \theta \]
By squaring both sides of the above equation, we get,
\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,
\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta
\right)\left( b\tan \theta \right)\]
We can also write the above equation as
\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i
\right)\]
Now, let us consider the expression for y given in the question, we get,
\[y=a\tan \theta +b\sec \theta \]
By squaring both sides of the above equation, we get,
\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get
\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta
\right)\left( b\sec \theta \right)\]
We can also write the above expression as,
\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii
\right)\]
Now, by subtracting equation (ii) from (i), we get
\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan
\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta
\right)\]
By rearranging the terms of the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]
By canceling the like terms in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta \]
By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan
}^{2}}\theta -{{\sec }^{2}}\theta \right)\]
We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].
By substituting these in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]
Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Hence proved.
Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.
Complete step by step solution:
We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to
prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Let us first consider the expression for x given in the question.
\[x=asec\theta +b\tan \theta \]
By squaring both sides of the above equation, we get,
\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,
\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta
\right)\left( b\tan \theta \right)\]
We can also write the above equation as
\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i
\right)\]
Now, let us consider the expression for y given in the question, we get,
\[y=a\tan \theta +b\sec \theta \]
By squaring both sides of the above equation, we get,
\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get
\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta
\right)\left( b\sec \theta \right)\]
We can also write the above expression as,
\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii
\right)\]
Now, by subtracting equation (ii) from (i), we get
\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan
\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta
\right)\]
By rearranging the terms of the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]
By canceling the like terms in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta \]
By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan
}^{2}}\theta -{{\sec }^{2}}\theta \right)\]
We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].
By substituting these in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]
Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Hence proved.
Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it