
Prove the following identities:
If \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], prove that \[{{x}^{2}}-
{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Answer
510.3k+ views
Hint: First of all, find the expression for \[{{x}^{2}}\] and \[{{y}^{2}}\] by using the formula \[{{\left( p+q\right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. Then take the difference that \[{{x}^{2}}-{{y}^{2}}\]. Then use identity \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] to prove the desired result.
Complete step by step solution:
We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to
prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Let us first consider the expression for x given in the question.
\[x=asec\theta +b\tan \theta \]
By squaring both sides of the above equation, we get,
\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,
\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta
\right)\left( b\tan \theta \right)\]
We can also write the above equation as
\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i
\right)\]
Now, let us consider the expression for y given in the question, we get,
\[y=a\tan \theta +b\sec \theta \]
By squaring both sides of the above equation, we get,
\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get
\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta
\right)\left( b\sec \theta \right)\]
We can also write the above expression as,
\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii
\right)\]
Now, by subtracting equation (ii) from (i), we get
\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan
\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta
\right)\]
By rearranging the terms of the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]
By canceling the like terms in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta \]
By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan
}^{2}}\theta -{{\sec }^{2}}\theta \right)\]
We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].
By substituting these in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]
Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Hence proved.
Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.
Complete step by step solution:
We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to
prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Let us first consider the expression for x given in the question.
\[x=asec\theta +b\tan \theta \]
By squaring both sides of the above equation, we get,
\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,
\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta
\right)\left( b\tan \theta \right)\]
We can also write the above equation as
\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i
\right)\]
Now, let us consider the expression for y given in the question, we get,
\[y=a\tan \theta +b\sec \theta \]
By squaring both sides of the above equation, we get,
\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get
\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta
\right)\left( b\sec \theta \right)\]
We can also write the above expression as,
\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii
\right)\]
Now, by subtracting equation (ii) from (i), we get
\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan
\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta
\right)\]
By rearranging the terms of the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]
By canceling the like terms in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta \]
By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan
}^{2}}\theta -{{\sec }^{2}}\theta \right)\]
We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].
By substituting these in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]
Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Hence proved.
Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
