
Prove the following identities:
If \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], prove that \[{{x}^{2}}-
{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Answer
595.8k+ views
Hint: First of all, find the expression for \[{{x}^{2}}\] and \[{{y}^{2}}\] by using the formula \[{{\left( p+q\right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. Then take the difference that \[{{x}^{2}}-{{y}^{2}}\]. Then use identity \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] to prove the desired result.
Complete step by step solution:
We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to
prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Let us first consider the expression for x given in the question.
\[x=asec\theta +b\tan \theta \]
By squaring both sides of the above equation, we get,
\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,
\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta
\right)\left( b\tan \theta \right)\]
We can also write the above equation as
\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i
\right)\]
Now, let us consider the expression for y given in the question, we get,
\[y=a\tan \theta +b\sec \theta \]
By squaring both sides of the above equation, we get,
\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get
\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta
\right)\left( b\sec \theta \right)\]
We can also write the above expression as,
\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii
\right)\]
Now, by subtracting equation (ii) from (i), we get
\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan
\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta
\right)\]
By rearranging the terms of the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]
By canceling the like terms in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta \]
By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan
}^{2}}\theta -{{\sec }^{2}}\theta \right)\]
We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].
By substituting these in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]
Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Hence proved.
Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.
Complete step by step solution:
We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to
prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Let us first consider the expression for x given in the question.
\[x=asec\theta +b\tan \theta \]
By squaring both sides of the above equation, we get,
\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,
\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta
\right)\left( b\tan \theta \right)\]
We can also write the above equation as
\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i
\right)\]
Now, let us consider the expression for y given in the question, we get,
\[y=a\tan \theta +b\sec \theta \]
By squaring both sides of the above equation, we get,
\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]
We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the
above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get
\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta
\right)\left( b\sec \theta \right)\]
We can also write the above expression as,
\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii
\right)\]
Now, by subtracting equation (ii) from (i), we get
\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan
\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta
\right)\]
By rearranging the terms of the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]
By canceling the like terms in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -
{{b}^{2}}{{\sec }^{2}}\theta \]
By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan
}^{2}}\theta -{{\sec }^{2}}\theta \right)\]
We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].
By substituting these in the above equation, we get,
\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]
Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]
Hence proved.
Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

How would you explain how the lightindependent reaction class 11 biology CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

10 examples of friction in our daily life

