Answer

Verified

422.4k+ views

Hint: First of all, find the expression for \[{{x}^{2}}\] and \[{{y}^{2}}\] by using the formula \[{{\left( p+q\right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. Then take the difference that \[{{x}^{2}}-{{y}^{2}}\]. Then use identity \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] to prove the desired result.

Complete step by step solution:

We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to

prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]

Let us first consider the expression for x given in the question.

\[x=asec\theta +b\tan \theta \]

By squaring both sides of the above equation, we get,

\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]

We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the

above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,

\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta

\right)\left( b\tan \theta \right)\]

We can also write the above equation as

\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i

\right)\]

Now, let us consider the expression for y given in the question, we get,

\[y=a\tan \theta +b\sec \theta \]

By squaring both sides of the above equation, we get,

\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]

We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the

above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get

\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta

\right)\left( b\sec \theta \right)\]

We can also write the above expression as,

\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii

\right)\]

Now, by subtracting equation (ii) from (i), we get

\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan

\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta

\right)\]

By rearranging the terms of the above equation, we get,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -

{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]

By canceling the like terms in the above equation, we get,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -

{{b}^{2}}{{\sec }^{2}}\theta \]

By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan

}^{2}}\theta -{{\sec }^{2}}\theta \right)\]

We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].

By substituting these in the above equation, we get,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]

Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]

Hence proved.

Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.

Complete step by step solution:

We are given that \[x=a\sec \theta +b\tan \theta \] and \[y=a\tan \theta +b\sec \theta \], we have to

prove that \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]

Let us first consider the expression for x given in the question.

\[x=asec\theta +b\tan \theta \]

By squaring both sides of the above equation, we get,

\[{{x}^{2}}={{\left( a\sec \theta +b\tan \theta \right)}^{2}}\]

We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the

above equation by considering \[p=a\sec \theta \] and \[q=b\tan \theta \], we get,

\[{{x}^{2}}={{\left( a\sec \theta \right)}^{2}}+{{\left( b\tan \theta \right)}^{2}}+2\left( a\sec \theta

\right)\left( b\tan \theta \right)\]

We can also write the above equation as

\[{{x}^{2}}={{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( i

\right)\]

Now, let us consider the expression for y given in the question, we get,

\[y=a\tan \theta +b\sec \theta \]

By squaring both sides of the above equation, we get,

\[{{y}^{2}}={{\left( a\tan \theta +b\sec \theta \right)}^{2}}\]

We know that \[{{\left( p+q \right)}^{2}}={{p}^{2}}+{{q}^{2}}+2pq\]. By applying this formula in RHS of the

above equation by considering \[p=a\tan \theta \] and \[q=b\sec \theta \], we get

\[{{y}^{2}}={{\left( a\tan \theta \right)}^{2}}+{{\left( b\sec \theta \right)}^{2}}+2\left( a\tan \theta

\right)\left( b\sec \theta \right)\]

We can also write the above expression as,

\[{{y}^{2}}={{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta ....\left( ii

\right)\]

Now, by subtracting equation (ii) from (i), we get

\[{{x}^{2}}-{{y}^{2}}=\left( {{a}^{2}}{{\sec }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta +2ab\sec \theta \tan

\theta \right)-\left( {{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta

\right)\]

By rearranging the terms of the above equation, we get,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -

{{b}^{2}}{{\sec }^{2}}\theta +2ab\sec \theta \tan \theta -2ab\sec \theta \tan \theta \]

By canceling the like terms in the above equation, we get,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}{{\sec }^{2}}\theta -{{a}^{2}}{{\tan }^{2}}\theta +{{b}^{2}}{{\tan }^{2}}\theta -

{{b}^{2}}{{\sec }^{2}}\theta \]

By taking \[{{a}^{2}}\] and \[{{b}^{2}}\]common, we can write above the equation as,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)+{{b}^{2}}\left( {{\tan

}^{2}}\theta -{{\sec }^{2}}\theta \right)\]

We know that \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\] or \[{{\tan }^{2}}\theta -{{\sec }^{2}}\theta =- 1\].

By substituting these in the above equation, we get,

\[{{x}^{2}}-{{y}^{2}}={{a}^{2}}\left( 1 \right)+{{b}^{2}}\left( -1 \right)\]

Or, \[{{x}^{2}}-{{y}^{2}}={{a}^{2}}-{{b}^{2}}\]

Hence proved.

Note: Here students must note that they must subtract \[{{y}^{2}}\] from \[{{x}^{2}}\]. Students often make the mistake of subtracting expression of \[{{x}^{2}}\] from the expression of \[{{y}^{2}}\] and writing the same in RHS and equating it with \[\left( {{x}^{2}}-{{y}^{2}} \right)\] in LHS while what they calculated is \[\left( {{y}^{2}}-{{x}^{2}} \right)\]. So this mistake must be avoided.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What organs are located on the left side of your body class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE