
Prove the following identities:
\[\cosh A - \cosh B = 2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})\]
Answer
593.1k+ views
Hint: We will use the expansion of hyperbolic functions and substitute the values in LHS and RHS of the equation separately.
* \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]
Complete step-by-step answer:
First we solve Left hand side of the equation i.e. \[\left( {\cosh A - \cosh B} \right)\]
We know \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
So, we find the values of \[\cosh A,\cosh B\]
\[ \Rightarrow \cosh A = \dfrac{{{e^A} + {e^{ - A}}}}{2}\]
\[ \Rightarrow \cosh B = \dfrac{{{e^B} + {e^{ - B}}}}{2}\]
Now substituting the values in LHS of the equation we get
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}}}}{2}} \right) - \left( {\dfrac{{{e^B} + {e^{ - B}}}}{2}} \right)\]
Now since the denominator is the same we can subtract the terms in the numerator.
\[
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} + {e^{ - A}}) - ({e^B} + {e^{ - B}})}}{2}} \right) \\
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}} - {e^B} - {e^{ - B}}}}{2}} \right) \\
\]
Group the terms in the numerator.
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}} \right)\] … (1)
Now we solve right hand side of the equation i.e. \[\left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right)\]
Since, we know \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\].
So we find the values of \[\sinh (\dfrac{{A + B}}{2}),\sinh (\dfrac{{A - B}}{2})\]
\[
\sinh (\dfrac{{A + B}}{2}) = \dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2} \\
\sinh (\dfrac{{A - B}}{2}) = \dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2} \\
\]
Substituting the values in RHS of the equation we get
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = 2\left( {\dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2}} \right)\left( {\dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2}} \right)\]
Cancel out the common factor 2 from both numerator and denominator.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left( {{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}} \right)\left( {{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}} \right)\]
Now we multiply the brackets.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}}} \right]\]
Now using the law of indices, when the base is the same powers can be added. Here the base is same i.e. e, so we can add the powers of each term
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2} + \dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2} + \dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2} + \dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2} + \dfrac{{ - A + B}}{2}}}} \right]\]
Taking LCM of terms in power
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B + A - B}}{2}}} - {e^{\dfrac{{A + B - A + B}}{2}}} - {e^{\dfrac{{ - A - B + A - B}}{2}}} + {e^{\dfrac{{ - A - B - A + B}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{2A}}{2}}} - {e^{\dfrac{{2B}}{2}}} - {e^{\dfrac{{ - 2B}}{2}}} + {e^{\dfrac{{ - 2A}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^A} - {e^B} - {e^{ - B}} + {e^{ - A}}} \right]\]
Grouping the terms in the bracket
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\] … (2)
From equation (1) and equation (2)
\[\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2} = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\]
We can say LHS = RHS
Hence proved.
Note: Students are likely to make calculation mistakes while calculating the powers in the second step, they are advised to find the two values of hyperbolic functions of sin separately and then multiply.
Also, they should not try to solve the part with negative powers by converting it into reciprocal as it will complicate our solution, we will have to take reciprocal, then take LCM and multiply all the terms with the LCM which is a long process.
* \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\] and \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\]
Complete step-by-step answer:
First we solve Left hand side of the equation i.e. \[\left( {\cosh A - \cosh B} \right)\]
We know \[\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}\]
So, we find the values of \[\cosh A,\cosh B\]
\[ \Rightarrow \cosh A = \dfrac{{{e^A} + {e^{ - A}}}}{2}\]
\[ \Rightarrow \cosh B = \dfrac{{{e^B} + {e^{ - B}}}}{2}\]
Now substituting the values in LHS of the equation we get
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}}}}{2}} \right) - \left( {\dfrac{{{e^B} + {e^{ - B}}}}{2}} \right)\]
Now since the denominator is the same we can subtract the terms in the numerator.
\[
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} + {e^{ - A}}) - ({e^B} + {e^{ - B}})}}{2}} \right) \\
\Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{{e^A} + {e^{ - A}} - {e^B} - {e^{ - B}}}}{2}} \right) \\
\]
Group the terms in the numerator.
\[ \Rightarrow \left( {\cosh A - \cosh B} \right) = \left( {\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}} \right)\] … (1)
Now we solve right hand side of the equation i.e. \[\left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right)\]
Since, we know \[\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}\].
So we find the values of \[\sinh (\dfrac{{A + B}}{2}),\sinh (\dfrac{{A - B}}{2})\]
\[
\sinh (\dfrac{{A + B}}{2}) = \dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2} \\
\sinh (\dfrac{{A - B}}{2}) = \dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2} \\
\]
Substituting the values in RHS of the equation we get
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = 2\left( {\dfrac{{{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}}}{2}} \right)\left( {\dfrac{{{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}}}{2}} \right)\]
Cancel out the common factor 2 from both numerator and denominator.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left( {{e^{\dfrac{{A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}}} \right)\left( {{e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{ - A + B}}{2}}}} \right)\]
Now we multiply the brackets.
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2}}} \times {e^{\dfrac{{ - A + B}}{2}}}} \right]\]
Now using the law of indices, when the base is the same powers can be added. Here the base is same i.e. e, so we can add the powers of each term
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B}}{2} + \dfrac{{A - B}}{2}}} - {e^{\dfrac{{A + B}}{2} + \dfrac{{ - A + B}}{2}}} - {e^{\dfrac{{ - A - B}}{2} + \dfrac{{A - B}}{2}}} + {e^{\dfrac{{ - A - B}}{2} + \dfrac{{ - A + B}}{2}}}} \right]\]
Taking LCM of terms in power
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{A + B + A - B}}{2}}} - {e^{\dfrac{{A + B - A + B}}{2}}} - {e^{\dfrac{{ - A - B + A - B}}{2}}} + {e^{\dfrac{{ - A - B - A + B}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^{\dfrac{{2A}}{2}}} - {e^{\dfrac{{2B}}{2}}} - {e^{\dfrac{{ - 2B}}{2}}} + {e^{\dfrac{{ - 2A}}{2}}}} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {{e^A} - {e^B} - {e^{ - B}} + {e^{ - A}}} \right]\]
Grouping the terms in the bracket
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{1}{2}\left[ {({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})} \right]\]
\[ \Rightarrow \left( {2\sinh (\dfrac{{A + B}}{2})\sinh (\dfrac{{A - B}}{2})} \right) = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\] … (2)
From equation (1) and equation (2)
\[\dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2} = \dfrac{{({e^A} - {e^B}) + ({e^{ - A}} - {e^{ - B}})}}{2}\]
We can say LHS = RHS
Hence proved.
Note: Students are likely to make calculation mistakes while calculating the powers in the second step, they are advised to find the two values of hyperbolic functions of sin separately and then multiply.
Also, they should not try to solve the part with negative powers by converting it into reciprocal as it will complicate our solution, we will have to take reciprocal, then take LCM and multiply all the terms with the LCM which is a long process.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

