Prove the following expression
$\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x$
Last updated date: 17th Mar 2023
•
Total views: 305.1k
•
Views today: 3.84k
Answer
305.1k+ views
Hint: To solve this question, recall all the formulas that you have studied in trigonometry. There is a formula in trigonometry for addition of two $\sin $ functions with different arguments. The formula is $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. Use this formula to solve this question.
Complete step-by-step answer:
Before proceeding with the question, one must know all the formulas that will be required to solve this question. In trigonometry, we have a formula that can be applied to the sum of two $\sin $ functions with different arguments. That formula is,
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)..............\left( 1 \right)$
Also, in trigonometry, there is a formula for $\cos $ function. That formula is,
$\cos \left( -A \right)=\cos \left( A \right)..............\left( 2 \right)$
In this question, we have to prove $\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x$.
Let us start from the left side of the expression. On the left side, we have,
\[\sin x+\sin 3x+\sin 5x+\sin 7x\]
We have to prove this equal to the right side of the expression i.e. $4\cos x\cos 2x\sin 4x$.
Let us club some terms on the left side with the use of brackets.
$\left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)....................\left( 3 \right)$
Inside the individual bracket, we can see that the term is the sum of two $\sin $ functions with different arguments. Hence, we can apply formula $\left( 1 \right)$ in both the brackets.
Applying formula $\left( 1 \right)$ to the first bracket i.e. $\sin x+\sin 3x$, we get,
\[\begin{align}
& \sin x+\sin 3x=2\sin \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right) \\
& \Rightarrow \sin x+\sin 3x=2\sin \left( \dfrac{4x}{2} \right)\cos \left( \dfrac{-2x}{2} \right) \\
& \Rightarrow \sin x+\sin 3x=2\sin \left( 2x \right)\cos \left( -x \right) \\
\end{align}\]
From the formula $\left( 2 \right)$, we can say $\cos \left( -x \right)=\cos x$.
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos x............\left( 4 \right)\]
Applying formula $\left( 1 \right)$ to the second bracket i.e. $\sin 5x+\sin 7x$, we get,
\[\begin{align}
& \sin 5x+\sin 7x=2\sin \left( \dfrac{5x+7x}{2} \right)\cos \left( \dfrac{5x-7x}{2} \right) \\
& \Rightarrow \sin 5x+\sin 7x=2\sin \left( \dfrac{12x}{2} \right)\cos \left( \dfrac{-2x}{2} \right) \\
& \Rightarrow \sin 5+\sin 7x=2\sin \left( 6x \right)\cos \left( -x \right) \\
\end{align}\]
From the formula $\left( 2 \right)$, we can say $\cos \left( -x \right)=\cos x$.
\[\Rightarrow \sin 5x+\sin 7x=2\sin 6x\cos x............\left( 5 \right)\]
Substituting equation $\left( 4 \right)$ and equation $\left( 5 \right)$ in the expression $\left( 3 \right)$, we get,
$\begin{align}
& \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=2\sin 2x\cos x+2\sin 6x\cos x \\
& \Rightarrow \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=2\cos x\left( \sin 2x+\sin 6x \right)..................\left( 6 \right) \\
\end{align}$
Applying formula $\left( 1 \right)$ to $\sin 2x+\sin 6x$ in the above expression, we get,
$\begin{align}
& \sin 2x+\sin 6x=2\sin \left( \dfrac{2x+6x}{2} \right)\cos \left( \dfrac{2x-6x}{2} \right) \\
& \Rightarrow \sin 2x+\sin 6x=2\sin \left( \dfrac{8x}{2} \right)\cos \left( \dfrac{-4x}{2} \right) \\
& \Rightarrow \sin 2x+\sin 6x=2\sin \left( 4x \right)\cos \left( -2x \right) \\
\end{align}$
From the formula $\left( 2 \right)$, we can say $\cos \left( -2x \right)=\cos 2x$.
$\Rightarrow \sin 2x+\sin 6x=2\sin 4x\cos 2x$
Substituting $\sin 2x+\sin 6x=2\sin 4x\cos 2x$ in equation$\left( 6 \right)$, we get,
$\begin{align}
& \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=2\cos x\left( 2\sin 4x\cos 2x \right) \\
& \Rightarrow \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=4\cos x\cos 2x\sin 4x \\
\end{align}$
Hence, we have proved the left side of the expression in the question to it’s right side.
Note: One can also solve this question by simplifying the right side term using the formula $2\cos a\cos b=\cos \left( a+b \right)+\cos \left( a-b \right)$ and $2\sin a\cos b=\sin \left( a+b \right)+\sin \left( a-b \right)$. Simplifying the right side using these formulas, we will get the left side.
Complete step-by-step answer:
Before proceeding with the question, one must know all the formulas that will be required to solve this question. In trigonometry, we have a formula that can be applied to the sum of two $\sin $ functions with different arguments. That formula is,
$\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)..............\left( 1 \right)$
Also, in trigonometry, there is a formula for $\cos $ function. That formula is,
$\cos \left( -A \right)=\cos \left( A \right)..............\left( 2 \right)$
In this question, we have to prove $\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x$.
Let us start from the left side of the expression. On the left side, we have,
\[\sin x+\sin 3x+\sin 5x+\sin 7x\]
We have to prove this equal to the right side of the expression i.e. $4\cos x\cos 2x\sin 4x$.
Let us club some terms on the left side with the use of brackets.
$\left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)....................\left( 3 \right)$
Inside the individual bracket, we can see that the term is the sum of two $\sin $ functions with different arguments. Hence, we can apply formula $\left( 1 \right)$ in both the brackets.
Applying formula $\left( 1 \right)$ to the first bracket i.e. $\sin x+\sin 3x$, we get,
\[\begin{align}
& \sin x+\sin 3x=2\sin \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right) \\
& \Rightarrow \sin x+\sin 3x=2\sin \left( \dfrac{4x}{2} \right)\cos \left( \dfrac{-2x}{2} \right) \\
& \Rightarrow \sin x+\sin 3x=2\sin \left( 2x \right)\cos \left( -x \right) \\
\end{align}\]
From the formula $\left( 2 \right)$, we can say $\cos \left( -x \right)=\cos x$.
\[\Rightarrow \sin x+\sin 3x=2\sin 2x\cos x............\left( 4 \right)\]
Applying formula $\left( 1 \right)$ to the second bracket i.e. $\sin 5x+\sin 7x$, we get,
\[\begin{align}
& \sin 5x+\sin 7x=2\sin \left( \dfrac{5x+7x}{2} \right)\cos \left( \dfrac{5x-7x}{2} \right) \\
& \Rightarrow \sin 5x+\sin 7x=2\sin \left( \dfrac{12x}{2} \right)\cos \left( \dfrac{-2x}{2} \right) \\
& \Rightarrow \sin 5+\sin 7x=2\sin \left( 6x \right)\cos \left( -x \right) \\
\end{align}\]
From the formula $\left( 2 \right)$, we can say $\cos \left( -x \right)=\cos x$.
\[\Rightarrow \sin 5x+\sin 7x=2\sin 6x\cos x............\left( 5 \right)\]
Substituting equation $\left( 4 \right)$ and equation $\left( 5 \right)$ in the expression $\left( 3 \right)$, we get,
$\begin{align}
& \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=2\sin 2x\cos x+2\sin 6x\cos x \\
& \Rightarrow \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=2\cos x\left( \sin 2x+\sin 6x \right)..................\left( 6 \right) \\
\end{align}$
Applying formula $\left( 1 \right)$ to $\sin 2x+\sin 6x$ in the above expression, we get,
$\begin{align}
& \sin 2x+\sin 6x=2\sin \left( \dfrac{2x+6x}{2} \right)\cos \left( \dfrac{2x-6x}{2} \right) \\
& \Rightarrow \sin 2x+\sin 6x=2\sin \left( \dfrac{8x}{2} \right)\cos \left( \dfrac{-4x}{2} \right) \\
& \Rightarrow \sin 2x+\sin 6x=2\sin \left( 4x \right)\cos \left( -2x \right) \\
\end{align}$
From the formula $\left( 2 \right)$, we can say $\cos \left( -2x \right)=\cos 2x$.
$\Rightarrow \sin 2x+\sin 6x=2\sin 4x\cos 2x$
Substituting $\sin 2x+\sin 6x=2\sin 4x\cos 2x$ in equation$\left( 6 \right)$, we get,
$\begin{align}
& \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=2\cos x\left( 2\sin 4x\cos 2x \right) \\
& \Rightarrow \left( \sin x+\sin 3x \right)+\left( \sin 5x+\sin 7x \right)=4\cos x\cos 2x\sin 4x \\
\end{align}$
Hence, we have proved the left side of the expression in the question to it’s right side.
Note: One can also solve this question by simplifying the right side term using the formula $2\cos a\cos b=\cos \left( a+b \right)+\cos \left( a-b \right)$ and $2\sin a\cos b=\sin \left( a+b \right)+\sin \left( a-b \right)$. Simplifying the right side using these formulas, we will get the left side.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
