Prove the following expression \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\]
Answer
Verified
505.2k+ views
Hint: We convert all trigonometric functions in the denominator into corresponding complementary trigonometric functions using the below formulae.
\[\cos \theta \text{ }=\sin \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
\[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
Complete step-by-step answer:
We have to prove the question \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\]
Now, we will take left hand side i.e. \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Let \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] be equation 1.
Now we will simplify the denominators of equation 1 in the following way.
First we will convert \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \] using the formula \[\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)\] ,
after converting \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \],equation 1 becomes \[\dfrac{\sin {{70}^{o}}}{\sin {{70}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Now we will cancel equal terms in numerator and denominator, after cancelling common terms in numerator and denominator, equation 1 becomes
\[\Rightarrow 1+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 2.
Now we will convert a \[\sec 70{}^\circ \] to \[\csc 20{}^\circ \] using the formula \[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sec 70{}^\circ \] to \[\text{csc20 }\!\!{}^\circ\!\!\text{ }\] equation 2 becomes \[\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\sin {{70}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{csc2}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\] ,
now we will cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 2 becomes
\[\Rightarrow 1+1-2\cos {{70}^{o}}\csc {{20}^{o}}\]
\[\Rightarrow 2-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 3.
We know that \[\csc\theta \] and \[\sin \theta \] are mutual reciprocals, that means $\csc \theta =\dfrac{1}{\sin \theta }$ or $\sin \theta =\dfrac{1}{\csc \theta }$
Now we will convert a$\csc 20{}^\circ $ to $\dfrac{1}{\sin 20{}^\circ }$ and equation 3 becomes
$2-2\dfrac{\cos 70{}^\circ }{\sin 20{}^\circ }$ let it be equation 4.
Now we will convert \[\sin 20{}^\circ \] to $\cos 70{}^\circ $ using the formula \[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sin 20{}^\circ \] to $\cos 70{}^\circ $ equation 4 becomes $2-2\dfrac{\cos 70{}^\circ }{\cos 70{}^\circ }$ .
Now we cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 4 becomes
$\Rightarrow 2-2\times 1$
\[\Rightarrow 0\]
=RHS
LHS=RHS
Hence, the following expression \[\text{ }\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\] is proved.
So, \[\text{ }\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\text{cos2}{{\text{0}}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{sec7}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\text{=0}\]
Note: Sometimes we convert trigonometric functions of non-standard angles to corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\], such that this conversion will help us to simplify the trigonometric equations and then there will be a confusion in converting trigonometric functions into corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\] so, be perfect with this type of basic formulae here.
\[\cos \theta \text{ }=\sin \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
\[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
Complete step-by-step answer:
We have to prove the question \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\]
Now, we will take left hand side i.e. \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Let \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] be equation 1.
Now we will simplify the denominators of equation 1 in the following way.
First we will convert \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \] using the formula \[\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)\] ,
after converting \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \],equation 1 becomes \[\dfrac{\sin {{70}^{o}}}{\sin {{70}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Now we will cancel equal terms in numerator and denominator, after cancelling common terms in numerator and denominator, equation 1 becomes
\[\Rightarrow 1+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 2.
Now we will convert a \[\sec 70{}^\circ \] to \[\csc 20{}^\circ \] using the formula \[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sec 70{}^\circ \] to \[\text{csc20 }\!\!{}^\circ\!\!\text{ }\] equation 2 becomes \[\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\sin {{70}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{csc2}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\] ,
now we will cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 2 becomes
\[\Rightarrow 1+1-2\cos {{70}^{o}}\csc {{20}^{o}}\]
\[\Rightarrow 2-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 3.
We know that \[\csc\theta \] and \[\sin \theta \] are mutual reciprocals, that means $\csc \theta =\dfrac{1}{\sin \theta }$ or $\sin \theta =\dfrac{1}{\csc \theta }$
Now we will convert a$\csc 20{}^\circ $ to $\dfrac{1}{\sin 20{}^\circ }$ and equation 3 becomes
$2-2\dfrac{\cos 70{}^\circ }{\sin 20{}^\circ }$ let it be equation 4.
Now we will convert \[\sin 20{}^\circ \] to $\cos 70{}^\circ $ using the formula \[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sin 20{}^\circ \] to $\cos 70{}^\circ $ equation 4 becomes $2-2\dfrac{\cos 70{}^\circ }{\cos 70{}^\circ }$ .
Now we cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 4 becomes
$\Rightarrow 2-2\times 1$
\[\Rightarrow 0\]
=RHS
LHS=RHS
Hence, the following expression \[\text{ }\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\] is proved.
So, \[\text{ }\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\text{cos2}{{\text{0}}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{sec7}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\text{=0}\]
Note: Sometimes we convert trigonometric functions of non-standard angles to corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\], such that this conversion will help us to simplify the trigonometric equations and then there will be a confusion in converting trigonometric functions into corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\] so, be perfect with this type of basic formulae here.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE