
Prove the following:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
Answer
577.8k+ views
Hint: We have to prove the given equation. As you can see that R.H.S of the above equation is a ${{\sin }^{-1}}$ term so we need to convert the L.H.S of the given equation into ${{\sin }^{-1}}$. Converting the L.H.S of the given equation into ${{\sin }^{-1}}$ we can write ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ as $\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right)$. Now, we have two terms in ${{\sin }^{-1}}$ with a negative sign so we can use the identity as ${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)$. Then put the values of x and y and solve the L.H.S of the equation.
Complete step by step answer:
We have given the following equation that we are asked to prove:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
As R.H.S contains ${{\sin }^{-1}}$ term so L.H.S should contain ${{\sin }^{-1}}$ term then L.H.S becomes equal to R.H.S and we can prove the given equation.
Solving L.H.S of the given equation we get,
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
We know that,
$\begin{align}
& {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\
& \Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
\end{align}$
Using the above relation we can write ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ as $\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right)$.
$\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Now, we know that the expansion of ${{\sin }^{-1}}x-{{\sin }^{-1}}y$ is equal to:
${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)$
Substituting x as $\dfrac{3}{5}$ and y as $\dfrac{12}{13}$ in the above formula we get,
$\begin{align}
& {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}}-\left( \dfrac{12}{13} \right)\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\left( \dfrac{144}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{1-\left( \dfrac{9}{25} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\left( \dfrac{169-144}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{\left( \dfrac{25-9}{25} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\left( \dfrac{25}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{\left( \dfrac{16}{25} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\left( \dfrac{5}{13} \right)-\left( \dfrac{12}{13} \right)\left( \dfrac{4}{5} \right) \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{15-48}{65} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( -\dfrac{33}{65} \right) \\
\end{align}$
Adding $\dfrac{\pi }{2}$ on both the sides we get,
${{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}={{\sin }^{-1}}\left( -\dfrac{33}{65} \right)+\dfrac{\pi }{2}$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ so using this relation in the above problem we get,
$\begin{align}
& {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}=-{{\sin }^{-1}}\left( \dfrac{33}{65} \right)+\dfrac{\pi }{2} \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}={{\cos }^{-1}}\left( \dfrac{33}{65} \right) \\
\end{align}$
Hence, we have resolved L.H.S to ${{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ but R.H.S is equal to ${{\sin }^{-1}}\left( \dfrac{56}{65} \right)$ so we have to convert ${{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ in terms of sine.
We know that:
${{\cos }^{-1}}x={{\sin }^{-1}}\left( \sqrt{1-{{x}^{2}}} \right)$
Now, using the above relation in ${{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ we get,
$\begin{align}
& {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{1-{{\left( \dfrac{33}{65} \right)}^{2}}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{1-\dfrac{1089}{4225}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{\dfrac{4225-1089}{4225}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{\dfrac{3136}{4225}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\dfrac{56}{65} \\
\end{align}$
Hence, we have got the L.H.S of the given equation as ${{\sin }^{-1}}\dfrac{56}{65}$ which is equal to R.H.S of the given equation. Hence, we have proved the given equation.
Note: The other way to solve the above problem is as follows:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
Subtracting ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ on both the sides we get,
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Solving R.H.S of the given equation and then proving the equation.
${{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Using the expansion of ${{\sin }^{-1}}x-{{\sin }^{-1}}y$ is equal to:
${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)$
Substituting x as $\dfrac{56}{65}$ and y as $\dfrac{3}{5}$ we get,
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}-\left( \dfrac{3}{5} \right)\sqrt{1-{{\left( \dfrac{56}{65} \right)}^{2}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{1-\left( \dfrac{9}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{1-\left( \dfrac{3136}{4225} \right)} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{\left( \dfrac{25-9}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{\left( \dfrac{4225-3136}{4225} \right)} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{\left( \dfrac{16}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{\left( \dfrac{1089}{4225} \right)} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\left( \dfrac{4}{5} \right)-\left( \dfrac{3}{5} \right)\left( \dfrac{33}{65} \right) \right) \\
& ={{\sin }^{-1}}\left( \dfrac{224-99}{325} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{125}{325} \right) \\
\end{align}$
Simplifying the fraction written inside ${{\sin }^{-1}}$ we get,
${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$
Now, L.H.S is equal to ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ so we have to convert ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ to ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ which we are going to do by the following way:
${{\sin }^{-1}}x={{\cos }^{-1}}\left( \sqrt{1-{{x}^{2}}} \right)$
Substituting x as $\dfrac{5}{13}$ we get,
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{\left( \dfrac{169-25}{169} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{\left( \dfrac{144}{169} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right) \\
\end{align}$
From the above, we have converted ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ to ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ which is equal to L.H.S.
Hence, L.H.S is equal to R.H.S
Complete step by step answer:
We have given the following equation that we are asked to prove:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
As R.H.S contains ${{\sin }^{-1}}$ term so L.H.S should contain ${{\sin }^{-1}}$ term then L.H.S becomes equal to R.H.S and we can prove the given equation.
Solving L.H.S of the given equation we get,
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
We know that,
$\begin{align}
& {{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2} \\
& \Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
\end{align}$
Using the above relation we can write ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ as $\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right)$.
$\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Now, we know that the expansion of ${{\sin }^{-1}}x-{{\sin }^{-1}}y$ is equal to:
${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)$
Substituting x as $\dfrac{3}{5}$ and y as $\dfrac{12}{13}$ in the above formula we get,
$\begin{align}
& {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}}-\left( \dfrac{12}{13} \right)\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{1-\left( \dfrac{144}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{1-\left( \dfrac{9}{25} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\left( \dfrac{169-144}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{\left( \dfrac{25-9}{25} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\sqrt{\left( \dfrac{25}{169} \right)}-\left( \dfrac{12}{13} \right)\sqrt{\left( \dfrac{16}{25} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{3}{5}\left( \dfrac{5}{13} \right)-\left( \dfrac{12}{13} \right)\left( \dfrac{4}{5} \right) \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( \dfrac{15-48}{65} \right) \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}={{\sin }^{-1}}\left( -\dfrac{33}{65} \right) \\
\end{align}$
Adding $\dfrac{\pi }{2}$ on both the sides we get,
${{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}={{\sin }^{-1}}\left( -\dfrac{33}{65} \right)+\dfrac{\pi }{2}$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ so using this relation in the above problem we get,
$\begin{align}
& {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}=-{{\sin }^{-1}}\left( \dfrac{33}{65} \right)+\dfrac{\pi }{2} \\
& \Rightarrow {{\sin }^{-1}}\dfrac{3}{5}-{{\sin }^{-1}}\dfrac{12}{13}+\dfrac{\pi }{2}={{\cos }^{-1}}\left( \dfrac{33}{65} \right) \\
\end{align}$
Hence, we have resolved L.H.S to ${{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ but R.H.S is equal to ${{\sin }^{-1}}\left( \dfrac{56}{65} \right)$ so we have to convert ${{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ in terms of sine.
We know that:
${{\cos }^{-1}}x={{\sin }^{-1}}\left( \sqrt{1-{{x}^{2}}} \right)$
Now, using the above relation in ${{\cos }^{-1}}\left( \dfrac{33}{65} \right)$ we get,
$\begin{align}
& {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{1-{{\left( \dfrac{33}{65} \right)}^{2}}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{1-\dfrac{1089}{4225}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{\dfrac{4225-1089}{4225}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\left( \sqrt{\dfrac{3136}{4225}} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{33}{65} \right)={{\sin }^{-1}}\dfrac{56}{65} \\
\end{align}$
Hence, we have got the L.H.S of the given equation as ${{\sin }^{-1}}\dfrac{56}{65}$ which is equal to R.H.S of the given equation. Hence, we have proved the given equation.
Note: The other way to solve the above problem is as follows:
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
Subtracting ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ on both the sides we get,
${{\cos }^{-1}}\left( \dfrac{12}{13} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Solving R.H.S of the given equation and then proving the equation.
${{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Using the expansion of ${{\sin }^{-1}}x-{{\sin }^{-1}}y$ is equal to:
${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)$
Substituting x as $\dfrac{56}{65}$ and y as $\dfrac{3}{5}$ we get,
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{56}{65} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}-\left( \dfrac{3}{5} \right)\sqrt{1-{{\left( \dfrac{56}{65} \right)}^{2}}} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{1-\left( \dfrac{9}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{1-\left( \dfrac{3136}{4225} \right)} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{\left( \dfrac{25-9}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{\left( \dfrac{4225-3136}{4225} \right)} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\sqrt{\left( \dfrac{16}{25} \right)}-\left( \dfrac{3}{5} \right)\sqrt{\left( \dfrac{1089}{4225} \right)} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{56}{65}\left( \dfrac{4}{5} \right)-\left( \dfrac{3}{5} \right)\left( \dfrac{33}{65} \right) \right) \\
& ={{\sin }^{-1}}\left( \dfrac{224-99}{325} \right) \\
& ={{\sin }^{-1}}\left( \dfrac{125}{325} \right) \\
\end{align}$
Simplifying the fraction written inside ${{\sin }^{-1}}$ we get,
${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$
Now, L.H.S is equal to ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ so we have to convert ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ to ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ which we are going to do by the following way:
${{\sin }^{-1}}x={{\cos }^{-1}}\left( \sqrt{1-{{x}^{2}}} \right)$
Substituting x as $\dfrac{5}{13}$ we get,
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{\left( \dfrac{169-25}{169} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \sqrt{\left( \dfrac{144}{169} \right)} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{12}{13} \right) \\
\end{align}$
From the above, we have converted ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ to ${{\cos }^{-1}}\left( \dfrac{12}{13} \right)$ which is equal to L.H.S.
Hence, L.H.S is equal to R.H.S
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

