Answer

Verified

447.6k+ views

Hint: In order to solve this question easily we will transform the given terms in of sin and cos. In this question we have to prove that the left - hand side is equal to the right - hand side.

Complete step-by-step answer:

Now, by using trigonometric identities we will easily solve the given problem. We know that $\sin {\text{A = }}\dfrac{1}{{\cos ec{\text{A}}}}$, ${\text{cosA = }}\dfrac{1}{{sec{\text{A}}}}$, ${\text{cotA = }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, ${\text{tanA = }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$. By using these properties, we will solve this question. Now, putting these values in the given question, we get

L. H. S = $\left( {1 + {\text{ }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}{\text{ - }}\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {1{\text{ + }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}{\text{ + }}\dfrac{1}{{\cos {\text{A}}}}} \right)$

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{\sin {\text{A + cosA - 1}}}}{{\sin {\text{A}}}}} \right)\left( {\dfrac{{\cos {\text{A + sinA + 1}}}}{{\cos {\text{A}}}}} \right)\]

Now we can see that in the above equation we can use the property \[{{\text{a}}^2} - {{\text{b}}^2} = ({\text{a - b)(a + b)}}\]

So, applying this property we get

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{{{(\sin {\text{A + cosA)}}}^2}{\text{ }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]

By solving further, we get

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{({{\sin }^2}{\text{A + co}}{{\text{s}}^2}{\text{A + 2cosA sinA) }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{2\sin {\text{A cosA}}}}{{\sin {\text{A cosA}}}}} \right)\] as ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$

\[ \Rightarrow \] L. H. S = 2 = R. H. S

Hence proved.

Note: To solve questions which include trigonometric terms it is suggested that you should simplify the given term by converting it into sin or cos whichever is possible. Converting in sin or cos simplify the term and you can easily solve the given term. Use identity ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$ properly after converting the trigonometric term.

Complete step-by-step answer:

Now, by using trigonometric identities we will easily solve the given problem. We know that $\sin {\text{A = }}\dfrac{1}{{\cos ec{\text{A}}}}$, ${\text{cosA = }}\dfrac{1}{{sec{\text{A}}}}$, ${\text{cotA = }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}$, ${\text{tanA = }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}$. By using these properties, we will solve this question. Now, putting these values in the given question, we get

L. H. S = $\left( {1 + {\text{ }}\dfrac{{\cos {\text{A}}}}{{\sin {\text{A}}}}{\text{ - }}\dfrac{1}{{\sin {\text{A}}}}} \right)\left( {1{\text{ + }}\dfrac{{\sin {\text{A}}}}{{\cos {\text{A}}}}{\text{ + }}\dfrac{1}{{\cos {\text{A}}}}} \right)$

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{\sin {\text{A + cosA - 1}}}}{{\sin {\text{A}}}}} \right)\left( {\dfrac{{\cos {\text{A + sinA + 1}}}}{{\cos {\text{A}}}}} \right)\]

Now we can see that in the above equation we can use the property \[{{\text{a}}^2} - {{\text{b}}^2} = ({\text{a - b)(a + b)}}\]

So, applying this property we get

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{{{(\sin {\text{A + cosA)}}}^2}{\text{ }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]

By solving further, we get

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{({{\sin }^2}{\text{A + co}}{{\text{s}}^2}{\text{A + 2cosA sinA) }} - {\text{ }}1}}{{\sin {\text{A cosA}}}}} \right)\]

\[ \Rightarrow \] L. H. S = \[\left( {\dfrac{{2\sin {\text{A cosA}}}}{{\sin {\text{A cosA}}}}} \right)\] as ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$

\[ \Rightarrow \] L. H. S = 2 = R. H. S

Hence proved.

Note: To solve questions which include trigonometric terms it is suggested that you should simplify the given term by converting it into sin or cos whichever is possible. Converting in sin or cos simplify the term and you can easily solve the given term. Use identity ${\sin ^2}{\text{A + }}{\text{co}}{{\text{s}}^2}{\text{A = 1}}$ properly after converting the trigonometric term.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE