
Prove the equality:
$\underset{n\text{ digits}}{\mathop{{{\left( 666...6 \right)}^{2}}}}\,+\underset{n\text{ digits}}{\mathop{888...8}}\,=\underset{2n\text{ digits}}{\mathop{444...4}}\,$
Answer
603.9k+ views
Hint: Take ${{S}_{1}}=666...6,{{S}_{2}}=888...8$. Expand them to form a geometric progression. Then find the value of ${{S}_{1}}^{2}+{{S}_{2}}$.
“Complete step-by-step answer:”
$\begin{align}
& \text{Take }{{S}_{1}}=666...6 \\
& \text{Given }{{S}_{1}}=666...\text{upto n-digits} \\
& =6+6\times 10+6\times {{10}^{2}}+6\times {{10}^{3}}+...+6\times {{10}^{n-1}} \\
& =6\left( 1+10+{{10}^{2}}+....+{{10}^{n-1}} \right) \\
\end{align}$
Now $1+10+{{10}^{2}}+....+{{10}^{n-1}}$ is the expanded form of $\dfrac{{{10}^{n}}-1}{10-1}$
i.e., It is of the form $\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$
Where a = first term, r = common ratio
Which is a geometric progression.
Here a = 1, r = 10.
$\therefore {{S}_{1}}=6\left[ 1\left( \dfrac{{{10}^{n}}-1}{10-1} \right) \right]=6\times \dfrac{\left( {{10}^{n}}-1 \right)}{9}=\dfrac{2}{3}\left( {{10}^{n}}-1 \right)$
Now ${{S}_{2}}=888...$ up to n-digits
\[\begin{align}
& =8+8\times 10+8\times {{10}^{2}}+...+8\times {{10}^{n-1}} \\
& =8\left( 1+10+{{10}^{2}}+...+{{10}^{n-1}} \right) \\
& =8\times 1\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]=\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\
\end{align}\]
We need to find ${{\left( {{S}_{1}} \right)}^{2}}+{{S}_{2}}={{\left[ \dfrac{2}{3}\left( {{10}^{n}}-1 \right) \right]}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right)$
$\begin{align}
& =\dfrac{4}{9}{{\left( {{10}^{n}}-1 \right)}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\
& =\dfrac{\left( {{10}^{n}}-1 \right)}{9}\left[ 4\left( {{10}^{n}}-1 \right)+8 \right] \\
\end{align}$
Taking 4 common,
$\begin{align}
& =4\left( \dfrac{{{10}^{n}}-1}{10-1} \right)\left[ \left( {{10}^{n}}-1 \right)+2 \right] \\
& =4\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]\left[ {{10}^{n}}-1+2 \right] \\
& =4\dfrac{\left( {{10}^{n}}-1 \right)\left( {{10}^{n}}+1 \right)}{10-1} \\
& =4\dfrac{\left[ {{\left( {{10}^{n}} \right)}^{2}}-{{1}^{2}} \right]}{10-1} \\
\end{align}$
We know ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
$=\dfrac{4\left[ {{10}^{2n}}-1 \right]}{\left[ 10-1 \right]}$
$\therefore $444....4 up to 2n digits.
Hence proved.
Note: A geometric progression is a sequence in which each term is derived by multiplying/dividing the preceding term by a fixed number called common ratio.
The general form of GP is $a,ar,a{{r}^{2}},a{{r}^{3}}$ and so on;
a = first term
r = common ratio
“Complete step-by-step answer:”
$\begin{align}
& \text{Take }{{S}_{1}}=666...6 \\
& \text{Given }{{S}_{1}}=666...\text{upto n-digits} \\
& =6+6\times 10+6\times {{10}^{2}}+6\times {{10}^{3}}+...+6\times {{10}^{n-1}} \\
& =6\left( 1+10+{{10}^{2}}+....+{{10}^{n-1}} \right) \\
\end{align}$
Now $1+10+{{10}^{2}}+....+{{10}^{n-1}}$ is the expanded form of $\dfrac{{{10}^{n}}-1}{10-1}$
i.e., It is of the form $\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$
Where a = first term, r = common ratio
Which is a geometric progression.
Here a = 1, r = 10.
$\therefore {{S}_{1}}=6\left[ 1\left( \dfrac{{{10}^{n}}-1}{10-1} \right) \right]=6\times \dfrac{\left( {{10}^{n}}-1 \right)}{9}=\dfrac{2}{3}\left( {{10}^{n}}-1 \right)$
Now ${{S}_{2}}=888...$ up to n-digits
\[\begin{align}
& =8+8\times 10+8\times {{10}^{2}}+...+8\times {{10}^{n-1}} \\
& =8\left( 1+10+{{10}^{2}}+...+{{10}^{n-1}} \right) \\
& =8\times 1\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]=\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\
\end{align}\]
We need to find ${{\left( {{S}_{1}} \right)}^{2}}+{{S}_{2}}={{\left[ \dfrac{2}{3}\left( {{10}^{n}}-1 \right) \right]}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right)$
$\begin{align}
& =\dfrac{4}{9}{{\left( {{10}^{n}}-1 \right)}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\
& =\dfrac{\left( {{10}^{n}}-1 \right)}{9}\left[ 4\left( {{10}^{n}}-1 \right)+8 \right] \\
\end{align}$
Taking 4 common,
$\begin{align}
& =4\left( \dfrac{{{10}^{n}}-1}{10-1} \right)\left[ \left( {{10}^{n}}-1 \right)+2 \right] \\
& =4\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]\left[ {{10}^{n}}-1+2 \right] \\
& =4\dfrac{\left( {{10}^{n}}-1 \right)\left( {{10}^{n}}+1 \right)}{10-1} \\
& =4\dfrac{\left[ {{\left( {{10}^{n}} \right)}^{2}}-{{1}^{2}} \right]}{10-1} \\
\end{align}$
We know ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
$=\dfrac{4\left[ {{10}^{2n}}-1 \right]}{\left[ 10-1 \right]}$
$\therefore $444....4 up to 2n digits.
Hence proved.
Note: A geometric progression is a sequence in which each term is derived by multiplying/dividing the preceding term by a fixed number called common ratio.
The general form of GP is $a,ar,a{{r}^{2}},a{{r}^{3}}$ and so on;
a = first term
r = common ratio
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

