# Prove the equality:

$\underset{n\text{ digits}}{\mathop{{{\left( 666...6 \right)}^{2}}}}\,+\underset{n\text{ digits}}{\mathop{888...8}}\,=\underset{2n\text{ digits}}{\mathop{444...4}}\,$

Last updated date: 14th Mar 2023

•

Total views: 304.2k

•

Views today: 4.84k

Answer

Verified

304.2k+ views

Hint: Take ${{S}_{1}}=666...6,{{S}_{2}}=888...8$. Expand them to form a geometric progression. Then find the value of ${{S}_{1}}^{2}+{{S}_{2}}$.

“Complete step-by-step answer:”

$\begin{align}

& \text{Take }{{S}_{1}}=666...6 \\

& \text{Given }{{S}_{1}}=666...\text{upto n-digits} \\

& =6+6\times 10+6\times {{10}^{2}}+6\times {{10}^{3}}+...+6\times {{10}^{n-1}} \\

& =6\left( 1+10+{{10}^{2}}+....+{{10}^{n-1}} \right) \\

\end{align}$

Now $1+10+{{10}^{2}}+....+{{10}^{n-1}}$ is the expanded form of $\dfrac{{{10}^{n}}-1}{10-1}$

i.e., It is of the form $\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

Where a = first term, r = common ratio

Which is a geometric progression.

Here a = 1, r = 10.

$\therefore {{S}_{1}}=6\left[ 1\left( \dfrac{{{10}^{n}}-1}{10-1} \right) \right]=6\times \dfrac{\left( {{10}^{n}}-1 \right)}{9}=\dfrac{2}{3}\left( {{10}^{n}}-1 \right)$

Now ${{S}_{2}}=888...$ up to n-digits

\[\begin{align}

& =8+8\times 10+8\times {{10}^{2}}+...+8\times {{10}^{n-1}} \\

& =8\left( 1+10+{{10}^{2}}+...+{{10}^{n-1}} \right) \\

& =8\times 1\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]=\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\

\end{align}\]

We need to find ${{\left( {{S}_{1}} \right)}^{2}}+{{S}_{2}}={{\left[ \dfrac{2}{3}\left( {{10}^{n}}-1 \right) \right]}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right)$

$\begin{align}

& =\dfrac{4}{9}{{\left( {{10}^{n}}-1 \right)}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\

& =\dfrac{\left( {{10}^{n}}-1 \right)}{9}\left[ 4\left( {{10}^{n}}-1 \right)+8 \right] \\

\end{align}$

Taking 4 common,

$\begin{align}

& =4\left( \dfrac{{{10}^{n}}-1}{10-1} \right)\left[ \left( {{10}^{n}}-1 \right)+2 \right] \\

& =4\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]\left[ {{10}^{n}}-1+2 \right] \\

& =4\dfrac{\left( {{10}^{n}}-1 \right)\left( {{10}^{n}}+1 \right)}{10-1} \\

& =4\dfrac{\left[ {{\left( {{10}^{n}} \right)}^{2}}-{{1}^{2}} \right]}{10-1} \\

\end{align}$

We know ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$

$=\dfrac{4\left[ {{10}^{2n}}-1 \right]}{\left[ 10-1 \right]}$

$\therefore $444....4 up to 2n digits.

Hence proved.

Note: A geometric progression is a sequence in which each term is derived by multiplying/dividing the preceding term by a fixed number called common ratio.

The general form of GP is $a,ar,a{{r}^{2}},a{{r}^{3}}$ and so on;

a = first term

r = common ratio

“Complete step-by-step answer:”

$\begin{align}

& \text{Take }{{S}_{1}}=666...6 \\

& \text{Given }{{S}_{1}}=666...\text{upto n-digits} \\

& =6+6\times 10+6\times {{10}^{2}}+6\times {{10}^{3}}+...+6\times {{10}^{n-1}} \\

& =6\left( 1+10+{{10}^{2}}+....+{{10}^{n-1}} \right) \\

\end{align}$

Now $1+10+{{10}^{2}}+....+{{10}^{n-1}}$ is the expanded form of $\dfrac{{{10}^{n}}-1}{10-1}$

i.e., It is of the form $\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

Where a = first term, r = common ratio

Which is a geometric progression.

Here a = 1, r = 10.

$\therefore {{S}_{1}}=6\left[ 1\left( \dfrac{{{10}^{n}}-1}{10-1} \right) \right]=6\times \dfrac{\left( {{10}^{n}}-1 \right)}{9}=\dfrac{2}{3}\left( {{10}^{n}}-1 \right)$

Now ${{S}_{2}}=888...$ up to n-digits

\[\begin{align}

& =8+8\times 10+8\times {{10}^{2}}+...+8\times {{10}^{n-1}} \\

& =8\left( 1+10+{{10}^{2}}+...+{{10}^{n-1}} \right) \\

& =8\times 1\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]=\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\

\end{align}\]

We need to find ${{\left( {{S}_{1}} \right)}^{2}}+{{S}_{2}}={{\left[ \dfrac{2}{3}\left( {{10}^{n}}-1 \right) \right]}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right)$

$\begin{align}

& =\dfrac{4}{9}{{\left( {{10}^{n}}-1 \right)}^{2}}+\dfrac{8}{9}\left( {{10}^{n}}-1 \right) \\

& =\dfrac{\left( {{10}^{n}}-1 \right)}{9}\left[ 4\left( {{10}^{n}}-1 \right)+8 \right] \\

\end{align}$

Taking 4 common,

$\begin{align}

& =4\left( \dfrac{{{10}^{n}}-1}{10-1} \right)\left[ \left( {{10}^{n}}-1 \right)+2 \right] \\

& =4\left[ \dfrac{{{10}^{n}}-1}{10-1} \right]\left[ {{10}^{n}}-1+2 \right] \\

& =4\dfrac{\left( {{10}^{n}}-1 \right)\left( {{10}^{n}}+1 \right)}{10-1} \\

& =4\dfrac{\left[ {{\left( {{10}^{n}} \right)}^{2}}-{{1}^{2}} \right]}{10-1} \\

\end{align}$

We know ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$

$=\dfrac{4\left[ {{10}^{2n}}-1 \right]}{\left[ 10-1 \right]}$

$\therefore $444....4 up to 2n digits.

Hence proved.

Note: A geometric progression is a sequence in which each term is derived by multiplying/dividing the preceding term by a fixed number called common ratio.

The general form of GP is $a,ar,a{{r}^{2}},a{{r}^{3}}$ and so on;

a = first term

r = common ratio

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE