Answer
Verified
456.3k+ views
Hint: We prove the question using the formula for determinant of order $3 \times 3$ \[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|.\]
Then use the following formula to calculate the determinant of order $2 \times 2.$
\[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc.\]
Foil method: The multiplication of $(x + y)(u + v)$ is given by $xu + xv + yu + yv.$
Complete step-by-step answer:
We are given\[\left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right|.\]
Using the formula\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|\] expand the given determinant.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1 + a)\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\] $...(1)$
Now we will calculate values of each determinant of order $2 \times 2$ separately and then substitute it back in equation (1).
Calculate the value of \[\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right|\] using \[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\] formula.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = (1 + b)(1 + c) - (1)(1)\]
Find the multiplication of \[(1 + b)(1 + c)\] by using foil method.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = (1)(1) + (1)(c) + b(1) + bc - 1\]
Simplify by doing multiplication.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = 1 + c + b + bc - 1\]
Simplify by adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = c + b + bc\] $...(2)$
Calculate the value of \[\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right|\] using \[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\] formula.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| = (1)(1 + c) - (1)(1)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| = 1 + c - 1\]
Simplify by adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| = c\] $...(3)$
Calculate the value of \[\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\] using \[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\] formula.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = (1)(1) - (1 + b)(1)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = 1 - (1 + b)\]
Simplify by distributing negative signs over parenthesis.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = 1 - 1 - b\]
Simplify by adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = - b\] $...(4)$
Step 5: Substitute values of \[\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right|,\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right|\] and \[\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\] from equation$(2), (3)$ and $(4)$ in equation \[\left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1 + a)\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\].
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1 + a)(c + b + bc) - 1(c) + 1( - b)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1)(c + b + bc) + a(c + b + bc) - c - b\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = c + b + bc + ac + ab + abc - c - b\]
Simplify adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = ab + bc + ca + abc\]
Hence, proved.
Additional Information: * Any matrix with a row having all elements as 0 will have its determinant is 0.
* The determinant of a diagonal matrix is the product of its diagonal entries.
* The determinant of a matrix is 0 if and only if its rows are linearly dependent, which means elements of a row can be written as a linear combination of elements of another row. If the rows are linearly independent, then the determinant is non-zero.
Note: Students can easily get confused while calculating the determinant if they don’t break it into three parts of $2 \times 2$ matrices. Also, many students make the mistake of not writing negative signs along with the second term of the determinant. Keep in mind we move in an alternate sign way, we take first value positive, then second negative and then third value again positive.
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|.\]
Then use the following formula to calculate the determinant of order $2 \times 2.$
\[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc.\]
Foil method: The multiplication of $(x + y)(u + v)$ is given by $xu + xv + yu + yv.$
Complete step-by-step answer:
We are given\[\left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right|.\]
Using the formula\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|\] expand the given determinant.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1 + a)\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\] $...(1)$
Now we will calculate values of each determinant of order $2 \times 2$ separately and then substitute it back in equation (1).
Calculate the value of \[\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right|\] using \[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\] formula.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = (1 + b)(1 + c) - (1)(1)\]
Find the multiplication of \[(1 + b)(1 + c)\] by using foil method.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = (1)(1) + (1)(c) + b(1) + bc - 1\]
Simplify by doing multiplication.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = 1 + c + b + bc - 1\]
Simplify by adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| = c + b + bc\] $...(2)$
Calculate the value of \[\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right|\] using \[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\] formula.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| = (1)(1 + c) - (1)(1)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| = 1 + c - 1\]
Simplify by adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| = c\] $...(3)$
Calculate the value of \[\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\] using \[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\] formula.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = (1)(1) - (1 + b)(1)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = 1 - (1 + b)\]
Simplify by distributing negative signs over parenthesis.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = 1 - 1 - b\]
Simplify by adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right| = - b\] $...(4)$
Step 5: Substitute values of \[\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right|,\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right|\] and \[\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\] from equation$(2), (3)$ and $(4)$ in equation \[\left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1 + a)\left| {\begin{array}{*{20}{c}}
{1 + b}&1 \\
1&{1 + c}
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&1 \\
1&{1 + c}
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{1 + b} \\
1&1
\end{array}} \right|\].
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1 + a)(c + b + bc) - 1(c) + 1( - b)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = (1)(c + b + bc) + a(c + b + bc) - c - b\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = c + b + bc + ac + ab + abc - c - b\]
Simplify adding like terms.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + a}&1&1 \\
1&{1 + b}&1 \\
1&1&{1 + c}
\end{array}} \right| = ab + bc + ca + abc\]
Hence, proved.
Additional Information: * Any matrix with a row having all elements as 0 will have its determinant is 0.
* The determinant of a diagonal matrix is the product of its diagonal entries.
* The determinant of a matrix is 0 if and only if its rows are linearly dependent, which means elements of a row can be written as a linear combination of elements of another row. If the rows are linearly independent, then the determinant is non-zero.
Note: Students can easily get confused while calculating the determinant if they don’t break it into three parts of $2 \times 2$ matrices. Also, many students make the mistake of not writing negative signs along with the second term of the determinant. Keep in mind we move in an alternate sign way, we take first value positive, then second negative and then third value again positive.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell