Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Prove that:${c^2} = {(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.$

Last updated date: 20th Jun 2024
Total views: 447.3k
Views today: 10.47k
Verified
447.3k+ views
Hint: Expand the given equation and try to eliminate the trigonometric terms.

Taking R.H.S.,
$\Rightarrow $${(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C. \Rightarrow$$({a^2} + {b^2} - 2ab){\cos ^2}\dfrac{1}{2}C + ({a^2} + {b^2} + 2ab){\sin ^2}\dfrac{1}{2}C$
$\Rightarrow$${a^2}{\cos ^2}\dfrac{1}{2}C + {b^2}{\cos ^2}\dfrac{1}{2}C - 2ab{\cos ^2}\dfrac{1}{2}C + {a^2}{\sin ^2}\dfrac{1}{2}C + {b^2}{\sin ^2}\dfrac{1}{2}C + 2ab{\sin ^2}\dfrac{1}{2}C$
$\Rightarrow$${a^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) + {b^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)$
We know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
Therefore, using this identity, we get,
$= {a^2} + {b^2} - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)$
We know the identity,
$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta$
Therefore, using this identity, we get,
$= {a^2} + {b^2} - 2ab\cos C$
Now, we know the identity,
$\cos C = \dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}$
Therefore, using this identity, we get,
$= {a^2} + {b^2} - 2ab\left( {\dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}} \right)$
$= {a^2} + {b^2} - ({b^2} + {a^2} - {c^2})$
$= {a^2} + {b^2} - {b^2} - {a^2} + {c^2}$
$= {c^2}$
That is, LHS=RHS.
So, this is the required solution.

Note: To solve such questions, we should have a good knowledge of various trigonometric identities. We have to analyse each and every step, and have to identify the identity being used to obtain the required solution.