     Question Answers

# Prove that:${c^2} = {(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.$  Hint: Expand the given equation and try to eliminate the trigonometric terms.

Taking R.H.S.,
$\Rightarrow ${(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C. \Rightarrow$({a^2} + {b^2} - 2ab){\cos ^2}\dfrac{1}{2}C + ({a^2} + {b^2} + 2ab){\sin ^2}\dfrac{1}{2}C$
$\Rightarrow$${a^2}{\cos ^2}\dfrac{1}{2}C + {b^2}{\cos ^2}\dfrac{1}{2}C - 2ab{\cos ^2}\dfrac{1}{2}C + {a^2}{\sin ^2}\dfrac{1}{2}C + {b^2}{\sin ^2}\dfrac{1}{2}C + 2ab{\sin ^2}\dfrac{1}{2}C$
$\Rightarrow$${a^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) + {b^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)$
We know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
Therefore, using this identity, we get,
$= {a^2} + {b^2} - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)$
We know the identity,
$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta$
Therefore, using this identity, we get,
$= {a^2} + {b^2} - 2ab\cos C$
Now, we know the identity,
$\cos C = \dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}$
Therefore, using this identity, we get,
$= {a^2} + {b^2} - 2ab\left( {\dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}} \right)$
$= {a^2} + {b^2} - ({b^2} + {a^2} - {c^2})$
$= {a^2} + {b^2} - {b^2} - {a^2} + {c^2}$
$= {c^2}$
That is, LHS=RHS.
So, this is the required solution.

Note: To solve such questions, we should have a good knowledge of various trigonometric identities. We have to analyse each and every step, and have to identify the identity being used to obtain the required solution.

View Notes
CBSE Class 11 Maths Formulas  Area of a Sector of a Circle Formula  Perpendicular Distance Of A Point From A Plane  Bacteria – A Boon or A Bane?  Vitamin A  CBSE Class 11 Maths Sets Formulas  A Thing of Beauty is a Joy Forever Essay  Movement Along A Curve Vs Shift of A Curve  Parts of a Computer  Angle Between a Line and a Plane  