
Prove that:${c^2} = {(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.$
Answer
610.8k+ views
Hint: Expand the given equation and try to eliminate the trigonometric terms.
Taking R.H.S.,
$ \Rightarrow $${(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.$
$ \Rightarrow $$({a^2} + {b^2} - 2ab){\cos ^2}\dfrac{1}{2}C + ({a^2} + {b^2} + 2ab){\sin ^2}\dfrac{1}{2}C$
$ \Rightarrow $${a^2}{\cos ^2}\dfrac{1}{2}C + {b^2}{\cos ^2}\dfrac{1}{2}C - 2ab{\cos ^2}\dfrac{1}{2}C + {a^2}{\sin ^2}\dfrac{1}{2}C + {b^2}{\sin ^2}\dfrac{1}{2}C + 2ab{\sin ^2}\dfrac{1}{2}C$
$ \Rightarrow $\[{a^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) + {b^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)\]
We know that, \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\]
Therefore, using this identity, we get,
\[ = {a^2} + {b^2} - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)\]
We know the identity,
\[\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta \]
Therefore, using this identity, we get,
\[ = {a^2} + {b^2} - 2ab\cos C\]
Now, we know the identity,
$\cos C = \dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}$
Therefore, using this identity, we get,
\[ = {a^2} + {b^2} - 2ab\left( {\dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}} \right)\]
\[ = {a^2} + {b^2} - ({b^2} + {a^2} - {c^2})\]
\[ = {a^2} + {b^2} - {b^2} - {a^2} + {c^2}\]
\[ = {c^2}\]
That is, LHS=RHS.
So, this is the required solution.
Note: To solve such questions, we should have a good knowledge of various trigonometric identities. We have to analyse each and every step, and have to identify the identity being used to obtain the required solution.
Taking R.H.S.,
$ \Rightarrow $${(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.$
$ \Rightarrow $$({a^2} + {b^2} - 2ab){\cos ^2}\dfrac{1}{2}C + ({a^2} + {b^2} + 2ab){\sin ^2}\dfrac{1}{2}C$
$ \Rightarrow $${a^2}{\cos ^2}\dfrac{1}{2}C + {b^2}{\cos ^2}\dfrac{1}{2}C - 2ab{\cos ^2}\dfrac{1}{2}C + {a^2}{\sin ^2}\dfrac{1}{2}C + {b^2}{\sin ^2}\dfrac{1}{2}C + 2ab{\sin ^2}\dfrac{1}{2}C$
$ \Rightarrow $\[{a^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) + {b^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)\]
We know that, \[\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1\]
Therefore, using this identity, we get,
\[ = {a^2} + {b^2} - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)\]
We know the identity,
\[\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta \]
Therefore, using this identity, we get,
\[ = {a^2} + {b^2} - 2ab\cos C\]
Now, we know the identity,
$\cos C = \dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}$
Therefore, using this identity, we get,
\[ = {a^2} + {b^2} - 2ab\left( {\dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}} \right)\]
\[ = {a^2} + {b^2} - ({b^2} + {a^2} - {c^2})\]
\[ = {a^2} + {b^2} - {b^2} - {a^2} + {c^2}\]
\[ = {c^2}\]
That is, LHS=RHS.
So, this is the required solution.
Note: To solve such questions, we should have a good knowledge of various trigonometric identities. We have to analyse each and every step, and have to identify the identity being used to obtain the required solution.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

