
Prove that trigonometric equation $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
Answer
592.5k+ views
Hint: The given question is related to trigonometric identities. Try to recall the formulae related to the relationship between sine, cosine, tangent, and secant of an angle.
Complete step-by-step answer:
Before proceeding with the problem, first, let’s see the formulae used to solve the given problem.
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
We need to prove that $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
First, we will consider the left-hand side of the equation. The left-hand side of the equation is given as $\dfrac{\tan \theta }{\sec \theta +1}$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the left-hand side of the equation becomes $\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1}{\cos \theta }+1}$ .
$\Rightarrow LHS=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1+\cos \theta }{\cos \theta }}$
$\Rightarrow LHS=\dfrac{\sin \theta }{1+\cos \theta }$
Now, we know that the value of a fraction does not change on multiplying and dividing the fraction by the same number, except $0$ .
So, $LHS=\dfrac{\sin \theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }$ .
$\Rightarrow LHS=\dfrac{\sin \theta \left( 1-\cos \theta \right)}{1-{{\cos }^{2}}\theta }$
Now, we know that the value of $1-{{\cos }^{2}}\theta $ is equal to ${{\sin }^{2}}\theta $. So, the value of the left-hand side of the equation becomes $\dfrac{\sin \theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }$ .
$\Rightarrow LHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the left-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ .
Now, we will consider the right-hand side of the equation. The right-hand side of the equation is given as $\dfrac{\sec \theta -1}{\tan \theta }$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the right-hand side of the equation becomes $\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}$ .
\[\Rightarrow RHS=\dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }}\]
$\Rightarrow RHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the right-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ . Clearly, the values of the left-hand side of the equation and the right-hand side of the equation are the same, i.e. LHS=RHS. Hence, proved.
Note: Students generally get confused and write $1+{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ instead of $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ , which is wrong. These formulae should be properly remembered without any mistake as confusion in the formula can result in getting a wrong answer.
Complete step-by-step answer:
Before proceeding with the problem, first, let’s see the formulae used to solve the given problem.
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
We need to prove that $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
First, we will consider the left-hand side of the equation. The left-hand side of the equation is given as $\dfrac{\tan \theta }{\sec \theta +1}$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the left-hand side of the equation becomes $\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1}{\cos \theta }+1}$ .
$\Rightarrow LHS=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1+\cos \theta }{\cos \theta }}$
$\Rightarrow LHS=\dfrac{\sin \theta }{1+\cos \theta }$
Now, we know that the value of a fraction does not change on multiplying and dividing the fraction by the same number, except $0$ .
So, $LHS=\dfrac{\sin \theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }$ .
$\Rightarrow LHS=\dfrac{\sin \theta \left( 1-\cos \theta \right)}{1-{{\cos }^{2}}\theta }$
Now, we know that the value of $1-{{\cos }^{2}}\theta $ is equal to ${{\sin }^{2}}\theta $. So, the value of the left-hand side of the equation becomes $\dfrac{\sin \theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }$ .
$\Rightarrow LHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the left-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ .
Now, we will consider the right-hand side of the equation. The right-hand side of the equation is given as $\dfrac{\sec \theta -1}{\tan \theta }$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the right-hand side of the equation becomes $\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}$ .
\[\Rightarrow RHS=\dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }}\]
$\Rightarrow RHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the right-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ . Clearly, the values of the left-hand side of the equation and the right-hand side of the equation are the same, i.e. LHS=RHS. Hence, proved.
Note: Students generally get confused and write $1+{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ instead of $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ , which is wrong. These formulae should be properly remembered without any mistake as confusion in the formula can result in getting a wrong answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

