Answer
Verified
492.3k+ views
Hint: The given question is related to trigonometric identities. Try to recall the formulae related to the relationship between sine, cosine, tangent, and secant of an angle.
Complete step-by-step answer:
Before proceeding with the problem, first, let’s see the formulae used to solve the given problem.
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
We need to prove that $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
First, we will consider the left-hand side of the equation. The left-hand side of the equation is given as $\dfrac{\tan \theta }{\sec \theta +1}$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the left-hand side of the equation becomes $\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1}{\cos \theta }+1}$ .
$\Rightarrow LHS=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1+\cos \theta }{\cos \theta }}$
$\Rightarrow LHS=\dfrac{\sin \theta }{1+\cos \theta }$
Now, we know that the value of a fraction does not change on multiplying and dividing the fraction by the same number, except $0$ .
So, $LHS=\dfrac{\sin \theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }$ .
$\Rightarrow LHS=\dfrac{\sin \theta \left( 1-\cos \theta \right)}{1-{{\cos }^{2}}\theta }$
Now, we know that the value of $1-{{\cos }^{2}}\theta $ is equal to ${{\sin }^{2}}\theta $. So, the value of the left-hand side of the equation becomes $\dfrac{\sin \theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }$ .
$\Rightarrow LHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the left-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ .
Now, we will consider the right-hand side of the equation. The right-hand side of the equation is given as $\dfrac{\sec \theta -1}{\tan \theta }$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the right-hand side of the equation becomes $\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}$ .
\[\Rightarrow RHS=\dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }}\]
$\Rightarrow RHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the right-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ . Clearly, the values of the left-hand side of the equation and the right-hand side of the equation are the same, i.e. LHS=RHS. Hence, proved.
Note: Students generally get confused and write $1+{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ instead of $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ , which is wrong. These formulae should be properly remembered without any mistake as confusion in the formula can result in getting a wrong answer.
Complete step-by-step answer:
Before proceeding with the problem, first, let’s see the formulae used to solve the given problem.
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $
We need to prove that $\dfrac{\tan \theta }{\sec \theta +1}=\dfrac{\sec \theta -1}{\tan \theta }$.
First, we will consider the left-hand side of the equation. The left-hand side of the equation is given as $\dfrac{\tan \theta }{\sec \theta +1}$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the left-hand side of the equation becomes $\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1}{\cos \theta }+1}$ .
$\Rightarrow LHS=\dfrac{\dfrac{\sin \theta }{\cos \theta }}{\dfrac{1+\cos \theta }{\cos \theta }}$
$\Rightarrow LHS=\dfrac{\sin \theta }{1+\cos \theta }$
Now, we know that the value of a fraction does not change on multiplying and dividing the fraction by the same number, except $0$ .
So, $LHS=\dfrac{\sin \theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }$ .
$\Rightarrow LHS=\dfrac{\sin \theta \left( 1-\cos \theta \right)}{1-{{\cos }^{2}}\theta }$
Now, we know that the value of $1-{{\cos }^{2}}\theta $ is equal to ${{\sin }^{2}}\theta $. So, the value of the left-hand side of the equation becomes $\dfrac{\sin \theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }$ .
$\Rightarrow LHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the left-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ .
Now, we will consider the right-hand side of the equation. The right-hand side of the equation is given as $\dfrac{\sec \theta -1}{\tan \theta }$ . We know $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ . So, the right-hand side of the equation becomes $\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}$ .
\[\Rightarrow RHS=\dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }}\]
$\Rightarrow RHS=\dfrac{1-\cos \theta }{\sin \theta }$
So, the value of the right-hand side of the equation is equal to $\dfrac{1-\cos \theta }{\sin \theta }$ . Clearly, the values of the left-hand side of the equation and the right-hand side of the equation are the same, i.e. LHS=RHS. Hence, proved.
Note: Students generally get confused and write $1+{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ instead of $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $ , which is wrong. These formulae should be properly remembered without any mistake as confusion in the formula can result in getting a wrong answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE