Answer
Verified
493.5k+ views
Hint- Here, we will be using a substitution method to find the point of intersection and also the general form of the equation of angle bisector of two straight lines will be used.
Given equations of the straight lines are
\[
15x - 18y + 1 = 0{\text{ }} \to {\text{(1)}} \\
12x + 10y - 3 = 0{\text{ }} \to {\text{(2) }} \\
6x + 66y - 11 = 0{\text{ }} \to {\text{(3)}} \\
\]
For the point of intersection of the first two straight lines given by equations (1) and (2),
Using equation (2), \[12x + 10y - 3 = 0 \Rightarrow x = \dfrac{{3 - 10y}}{{12}}{\text{ }} \to {\text{(4)}}\]
Put the above value of \[x\] in equation (1), we get
\[
{\text{15}}\left( {\dfrac{{3 - 10y}}{{12}}} \right) - 18y + 1 = 0 \Rightarrow 5\left( {\dfrac{{3 - 10y}}{4}} \right) - 18y + 1 = 0 \Rightarrow \dfrac{{15 - 50y}}{4} - 18y + 1 = 0 \\
\Rightarrow 15 - 50y - 72y + 4 = 0 \Rightarrow 15 - 122y + 4 = 0 \Rightarrow 122y = 19 \Rightarrow y = \dfrac{{19}}{{122}} \\
\]
Using equation (4), value of \[x\] is given by \[x = \dfrac{{3 - 10 \times \dfrac{{19}}{{122}}}}{{12}} = \dfrac{{\dfrac{{3 \times 122 - 10 \times 19}}{{122}}}}{{12}} = \dfrac{{366 - 190}}{{122 \times 12}} = \dfrac{{22}}{{183}}\]
Therefore, the point of intersection of the lines given by equations (1) and (2) is \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].
For all the given three straight lines to meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. This point must also satisfy the third equation of straight line given by equation (3). Let’s check this condition.
Put \[x = \dfrac{{22}}{{183}}\] and \[y = \dfrac{{19}}{{122}}\] in equation (3) and check whether it gets satisfied or not
\[6 \times \dfrac{{22}}{{183}} + 66 \times \dfrac{{19}}{{122}} - 11 = 0 \Rightarrow \dfrac{{44}}{{61}} + \dfrac{{627}}{{61}} - 11 = 0 \Rightarrow \dfrac{{44 + 627}}{{61}} - 11 = 0 \Rightarrow 11 - 11 = 0 \Rightarrow 0 = 0\]
This shows that the equation (3) is satisfied by the point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. Hence, all the given three straight lines meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].
Since, the equations of the angle bisector of two straight lines whose Cartesian equations are \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] is given by \[\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {{a_1}^2 + {b_1}^2} }} = \pm \dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {{a_2}^2 + {b_2}^2} }}\]
Therefore, equations of the angle bisector of the first two straight lines whose Cartesian equations are given by equations (1) and (2) are
\[
\dfrac{{15x - 18y + 1}}{{\sqrt {{{15}^2} + {{18}^2}} }} = \pm \dfrac{{12x + 10y - 3}}{{\sqrt {{{12}^2} + {{10}^2}} }} \Rightarrow \dfrac{{15x - 18y + 1}}{{3\sqrt {61} }} = \pm \dfrac{{12x + 10y - 3}}{{2\sqrt {61} }} \\
\Rightarrow \dfrac{{15x - 18y + 1}}{3} = \pm \dfrac{{12x + 10y - 3}}{2} \Rightarrow 2\left( {15x - 18y + 1} \right) = \pm 3\left( {12x + 10y - 3} \right) \\
\Rightarrow 30x - 36y + 2 = \pm \left( {36x + 30y - 9} \right) \\
\]
\[ \Rightarrow 30x - 36y + 2 = 36x + 30y - 9 \Rightarrow 6x + 66y - 11 = 0\] and \[{\text{3}}0x - 36y + 2 = - \left( {36x + 30y - 9} \right) \Rightarrow 66x - 6y - 7 = 0\]
Therefore, the equation of the third straight line given by equation (3) is one of the angle bisector’s equation which means that the given third straight line is the angle bisector of the first two straight lines.
Note- These types of problems are solved by solving any two equations for the point of intersection and then substituting this point in the third equation to check whether that point is the common point of intersection between all the three given lines. For the second part, the concept of the equation of the angle bisector of straight lines needs to be clear.
Given equations of the straight lines are
\[
15x - 18y + 1 = 0{\text{ }} \to {\text{(1)}} \\
12x + 10y - 3 = 0{\text{ }} \to {\text{(2) }} \\
6x + 66y - 11 = 0{\text{ }} \to {\text{(3)}} \\
\]
For the point of intersection of the first two straight lines given by equations (1) and (2),
Using equation (2), \[12x + 10y - 3 = 0 \Rightarrow x = \dfrac{{3 - 10y}}{{12}}{\text{ }} \to {\text{(4)}}\]
Put the above value of \[x\] in equation (1), we get
\[
{\text{15}}\left( {\dfrac{{3 - 10y}}{{12}}} \right) - 18y + 1 = 0 \Rightarrow 5\left( {\dfrac{{3 - 10y}}{4}} \right) - 18y + 1 = 0 \Rightarrow \dfrac{{15 - 50y}}{4} - 18y + 1 = 0 \\
\Rightarrow 15 - 50y - 72y + 4 = 0 \Rightarrow 15 - 122y + 4 = 0 \Rightarrow 122y = 19 \Rightarrow y = \dfrac{{19}}{{122}} \\
\]
Using equation (4), value of \[x\] is given by \[x = \dfrac{{3 - 10 \times \dfrac{{19}}{{122}}}}{{12}} = \dfrac{{\dfrac{{3 \times 122 - 10 \times 19}}{{122}}}}{{12}} = \dfrac{{366 - 190}}{{122 \times 12}} = \dfrac{{22}}{{183}}\]
Therefore, the point of intersection of the lines given by equations (1) and (2) is \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].
For all the given three straight lines to meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. This point must also satisfy the third equation of straight line given by equation (3). Let’s check this condition.
Put \[x = \dfrac{{22}}{{183}}\] and \[y = \dfrac{{19}}{{122}}\] in equation (3) and check whether it gets satisfied or not
\[6 \times \dfrac{{22}}{{183}} + 66 \times \dfrac{{19}}{{122}} - 11 = 0 \Rightarrow \dfrac{{44}}{{61}} + \dfrac{{627}}{{61}} - 11 = 0 \Rightarrow \dfrac{{44 + 627}}{{61}} - 11 = 0 \Rightarrow 11 - 11 = 0 \Rightarrow 0 = 0\]
This shows that the equation (3) is satisfied by the point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. Hence, all the given three straight lines meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].
Since, the equations of the angle bisector of two straight lines whose Cartesian equations are \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] is given by \[\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {{a_1}^2 + {b_1}^2} }} = \pm \dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {{a_2}^2 + {b_2}^2} }}\]
Therefore, equations of the angle bisector of the first two straight lines whose Cartesian equations are given by equations (1) and (2) are
\[
\dfrac{{15x - 18y + 1}}{{\sqrt {{{15}^2} + {{18}^2}} }} = \pm \dfrac{{12x + 10y - 3}}{{\sqrt {{{12}^2} + {{10}^2}} }} \Rightarrow \dfrac{{15x - 18y + 1}}{{3\sqrt {61} }} = \pm \dfrac{{12x + 10y - 3}}{{2\sqrt {61} }} \\
\Rightarrow \dfrac{{15x - 18y + 1}}{3} = \pm \dfrac{{12x + 10y - 3}}{2} \Rightarrow 2\left( {15x - 18y + 1} \right) = \pm 3\left( {12x + 10y - 3} \right) \\
\Rightarrow 30x - 36y + 2 = \pm \left( {36x + 30y - 9} \right) \\
\]
\[ \Rightarrow 30x - 36y + 2 = 36x + 30y - 9 \Rightarrow 6x + 66y - 11 = 0\] and \[{\text{3}}0x - 36y + 2 = - \left( {36x + 30y - 9} \right) \Rightarrow 66x - 6y - 7 = 0\]
Therefore, the equation of the third straight line given by equation (3) is one of the angle bisector’s equation which means that the given third straight line is the angle bisector of the first two straight lines.
Note- These types of problems are solved by solving any two equations for the point of intersection and then substituting this point in the third equation to check whether that point is the common point of intersection between all the three given lines. For the second part, the concept of the equation of the angle bisector of straight lines needs to be clear.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE