Answer

Verified

459.6k+ views

Hint- Here, we will be using a substitution method to find the point of intersection and also the general form of the equation of angle bisector of two straight lines will be used.

Given equations of the straight lines are

\[

15x - 18y + 1 = 0{\text{ }} \to {\text{(1)}} \\

12x + 10y - 3 = 0{\text{ }} \to {\text{(2) }} \\

6x + 66y - 11 = 0{\text{ }} \to {\text{(3)}} \\

\]

For the point of intersection of the first two straight lines given by equations (1) and (2),

Using equation (2), \[12x + 10y - 3 = 0 \Rightarrow x = \dfrac{{3 - 10y}}{{12}}{\text{ }} \to {\text{(4)}}\]

Put the above value of \[x\] in equation (1), we get

\[

{\text{15}}\left( {\dfrac{{3 - 10y}}{{12}}} \right) - 18y + 1 = 0 \Rightarrow 5\left( {\dfrac{{3 - 10y}}{4}} \right) - 18y + 1 = 0 \Rightarrow \dfrac{{15 - 50y}}{4} - 18y + 1 = 0 \\

\Rightarrow 15 - 50y - 72y + 4 = 0 \Rightarrow 15 - 122y + 4 = 0 \Rightarrow 122y = 19 \Rightarrow y = \dfrac{{19}}{{122}} \\

\]

Using equation (4), value of \[x\] is given by \[x = \dfrac{{3 - 10 \times \dfrac{{19}}{{122}}}}{{12}} = \dfrac{{\dfrac{{3 \times 122 - 10 \times 19}}{{122}}}}{{12}} = \dfrac{{366 - 190}}{{122 \times 12}} = \dfrac{{22}}{{183}}\]

Therefore, the point of intersection of the lines given by equations (1) and (2) is \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].

For all the given three straight lines to meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. This point must also satisfy the third equation of straight line given by equation (3). Let’s check this condition.

Put \[x = \dfrac{{22}}{{183}}\] and \[y = \dfrac{{19}}{{122}}\] in equation (3) and check whether it gets satisfied or not

\[6 \times \dfrac{{22}}{{183}} + 66 \times \dfrac{{19}}{{122}} - 11 = 0 \Rightarrow \dfrac{{44}}{{61}} + \dfrac{{627}}{{61}} - 11 = 0 \Rightarrow \dfrac{{44 + 627}}{{61}} - 11 = 0 \Rightarrow 11 - 11 = 0 \Rightarrow 0 = 0\]

This shows that the equation (3) is satisfied by the point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. Hence, all the given three straight lines meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].

Since, the equations of the angle bisector of two straight lines whose Cartesian equations are \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] is given by \[\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {{a_1}^2 + {b_1}^2} }} = \pm \dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {{a_2}^2 + {b_2}^2} }}\]

Therefore, equations of the angle bisector of the first two straight lines whose Cartesian equations are given by equations (1) and (2) are

\[

\dfrac{{15x - 18y + 1}}{{\sqrt {{{15}^2} + {{18}^2}} }} = \pm \dfrac{{12x + 10y - 3}}{{\sqrt {{{12}^2} + {{10}^2}} }} \Rightarrow \dfrac{{15x - 18y + 1}}{{3\sqrt {61} }} = \pm \dfrac{{12x + 10y - 3}}{{2\sqrt {61} }} \\

\Rightarrow \dfrac{{15x - 18y + 1}}{3} = \pm \dfrac{{12x + 10y - 3}}{2} \Rightarrow 2\left( {15x - 18y + 1} \right) = \pm 3\left( {12x + 10y - 3} \right) \\

\Rightarrow 30x - 36y + 2 = \pm \left( {36x + 30y - 9} \right) \\

\]

\[ \Rightarrow 30x - 36y + 2 = 36x + 30y - 9 \Rightarrow 6x + 66y - 11 = 0\] and \[{\text{3}}0x - 36y + 2 = - \left( {36x + 30y - 9} \right) \Rightarrow 66x - 6y - 7 = 0\]

Therefore, the equation of the third straight line given by equation (3) is one of the angle bisector’s equation which means that the given third straight line is the angle bisector of the first two straight lines.

Note- These types of problems are solved by solving any two equations for the point of intersection and then substituting this point in the third equation to check whether that point is the common point of intersection between all the three given lines. For the second part, the concept of the equation of the angle bisector of straight lines needs to be clear.

Given equations of the straight lines are

\[

15x - 18y + 1 = 0{\text{ }} \to {\text{(1)}} \\

12x + 10y - 3 = 0{\text{ }} \to {\text{(2) }} \\

6x + 66y - 11 = 0{\text{ }} \to {\text{(3)}} \\

\]

For the point of intersection of the first two straight lines given by equations (1) and (2),

Using equation (2), \[12x + 10y - 3 = 0 \Rightarrow x = \dfrac{{3 - 10y}}{{12}}{\text{ }} \to {\text{(4)}}\]

Put the above value of \[x\] in equation (1), we get

\[

{\text{15}}\left( {\dfrac{{3 - 10y}}{{12}}} \right) - 18y + 1 = 0 \Rightarrow 5\left( {\dfrac{{3 - 10y}}{4}} \right) - 18y + 1 = 0 \Rightarrow \dfrac{{15 - 50y}}{4} - 18y + 1 = 0 \\

\Rightarrow 15 - 50y - 72y + 4 = 0 \Rightarrow 15 - 122y + 4 = 0 \Rightarrow 122y = 19 \Rightarrow y = \dfrac{{19}}{{122}} \\

\]

Using equation (4), value of \[x\] is given by \[x = \dfrac{{3 - 10 \times \dfrac{{19}}{{122}}}}{{12}} = \dfrac{{\dfrac{{3 \times 122 - 10 \times 19}}{{122}}}}{{12}} = \dfrac{{366 - 190}}{{122 \times 12}} = \dfrac{{22}}{{183}}\]

Therefore, the point of intersection of the lines given by equations (1) and (2) is \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].

For all the given three straight lines to meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. This point must also satisfy the third equation of straight line given by equation (3). Let’s check this condition.

Put \[x = \dfrac{{22}}{{183}}\] and \[y = \dfrac{{19}}{{122}}\] in equation (3) and check whether it gets satisfied or not

\[6 \times \dfrac{{22}}{{183}} + 66 \times \dfrac{{19}}{{122}} - 11 = 0 \Rightarrow \dfrac{{44}}{{61}} + \dfrac{{627}}{{61}} - 11 = 0 \Rightarrow \dfrac{{44 + 627}}{{61}} - 11 = 0 \Rightarrow 11 - 11 = 0 \Rightarrow 0 = 0\]

This shows that the equation (3) is satisfied by the point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\]. Hence, all the given three straight lines meet at a point \[{\text{P}}\left( {\dfrac{{22}}{{183}},\dfrac{{19}}{{122}}} \right)\].

Since, the equations of the angle bisector of two straight lines whose Cartesian equations are \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] is given by \[\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {{a_1}^2 + {b_1}^2} }} = \pm \dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {{a_2}^2 + {b_2}^2} }}\]

Therefore, equations of the angle bisector of the first two straight lines whose Cartesian equations are given by equations (1) and (2) are

\[

\dfrac{{15x - 18y + 1}}{{\sqrt {{{15}^2} + {{18}^2}} }} = \pm \dfrac{{12x + 10y - 3}}{{\sqrt {{{12}^2} + {{10}^2}} }} \Rightarrow \dfrac{{15x - 18y + 1}}{{3\sqrt {61} }} = \pm \dfrac{{12x + 10y - 3}}{{2\sqrt {61} }} \\

\Rightarrow \dfrac{{15x - 18y + 1}}{3} = \pm \dfrac{{12x + 10y - 3}}{2} \Rightarrow 2\left( {15x - 18y + 1} \right) = \pm 3\left( {12x + 10y - 3} \right) \\

\Rightarrow 30x - 36y + 2 = \pm \left( {36x + 30y - 9} \right) \\

\]

\[ \Rightarrow 30x - 36y + 2 = 36x + 30y - 9 \Rightarrow 6x + 66y - 11 = 0\] and \[{\text{3}}0x - 36y + 2 = - \left( {36x + 30y - 9} \right) \Rightarrow 66x - 6y - 7 = 0\]

Therefore, the equation of the third straight line given by equation (3) is one of the angle bisector’s equation which means that the given third straight line is the angle bisector of the first two straight lines.

Note- These types of problems are solved by solving any two equations for the point of intersection and then substituting this point in the third equation to check whether that point is the common point of intersection between all the three given lines. For the second part, the concept of the equation of the angle bisector of straight lines needs to be clear.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE