
Prove that the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated is $\dfrac{1}{2}4!4!$.
Answer
514.8k+ views
Hint: In permutations and combinations, we have a formula to calculate the number of circular permutations of ‘n’ different things on the garland. This number of permutations is equal to $\dfrac{1}{2}\left( n-1 \right)!$. Use this formula to solve this question. Also, since 4 particular flowers are never separated, solve this question by considering these 4 flowers as a single unit.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, we have a formula that can be used to calculate the number of arrangements of n different things on the garland. The number of arrangements of n different things on the garland is equal to $\dfrac{1}{2}\left( n-1 \right)!...........\left( 1 \right)$.
Also, the number of ways in which n things can be arranged within themselves is equal to $n!............\left( 2 \right)$.
In this question, we are required to find the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated. Let us consider those 4 particular flowers as a single unit. If we consider these 4 particular flowers as a single unit, then we have to arrange 5 things (1 single unit of 4 particular flowers and other 4 flowers) instead of 8 things on the garland. Using formula $\left( 1 \right)$, the number of arrangements of these 5 elements is equal to $\dfrac{1}{2}\left( 5-1 \right)!=\dfrac{1}{2}4!............\left( 3 \right)$.
Since those 4 flowers that we had considered as a single unit were different from each other, so they can be arranged within themselves. Using formula $\left( 2 \right)$, the number of ways in which we can arrange these 4 flowers within themselves is equal to 4!$...........\left( 4 \right)$
Multiplying the numbers obtained in \[\left( 3 \right)\] and \[\left( 4 \right)\], the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated is equal to $\dfrac{1}{2}4!4!$.
Hence proved.
Note: There is a possibility that one may forget to arrange the 4 particular flowers among themselves which we have considered as a single unit. But since those four flowers are different from each other, it is necessary to arrange them within themselves.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, we have a formula that can be used to calculate the number of arrangements of n different things on the garland. The number of arrangements of n different things on the garland is equal to $\dfrac{1}{2}\left( n-1 \right)!...........\left( 1 \right)$.
Also, the number of ways in which n things can be arranged within themselves is equal to $n!............\left( 2 \right)$.
In this question, we are required to find the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated. Let us consider those 4 particular flowers as a single unit. If we consider these 4 particular flowers as a single unit, then we have to arrange 5 things (1 single unit of 4 particular flowers and other 4 flowers) instead of 8 things on the garland. Using formula $\left( 1 \right)$, the number of arrangements of these 5 elements is equal to $\dfrac{1}{2}\left( 5-1 \right)!=\dfrac{1}{2}4!............\left( 3 \right)$.
Since those 4 flowers that we had considered as a single unit were different from each other, so they can be arranged within themselves. Using formula $\left( 2 \right)$, the number of ways in which we can arrange these 4 flowers within themselves is equal to 4!$...........\left( 4 \right)$
Multiplying the numbers obtained in \[\left( 3 \right)\] and \[\left( 4 \right)\], the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated is equal to $\dfrac{1}{2}4!4!$.
Hence proved.
Note: There is a possibility that one may forget to arrange the 4 particular flowers among themselves which we have considered as a single unit. But since those four flowers are different from each other, it is necessary to arrange them within themselves.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

State the laws of reflection of light

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
