Prove that the expression ${\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)$.
Answer
Verified
507k+ views
Hint: We need to prove that in the given expression the left hand side is equal to the right hand side. Use the basic inverse trigonometric identities involving ${\tan ^{ - 1}}x$ and ${\cot ^{ - 1}}\left( {x + 1} \right)$ such that sum of these two is equal to $\dfrac{\pi }{2}$ along with the basic formula involving addition and subtraction of two ${\tan ^{ - 1}}{\text{entities}}$ to get the proof.
Complete step-by-step answer:
Given equation is
${\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)$
Now consider L.H.S
$ \Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right)$……….. (1)
As we know that ${\cot ^{ - 1}}A + {\tan ^{ - 1}}A = \dfrac{\pi }{2}$.
$ \Rightarrow {\cot ^{ - 1}}A = \dfrac{\pi }{2} - {\tan ^{ - 1}}A$
So, use this property in equation (1) we have,
$ \Rightarrow {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}\left( {x + 1} \right)$
$ = {\tan ^{ - 1}}x - {\tan ^{ - 1}}\left( {x + 1} \right) + \dfrac{\pi }{2}$
Now as we know that ${\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right)$ so, use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - x - 1}}{{1 + x\left( {x + 1} \right)}}} \right) + \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2}$……….. (2)
Now as we know ${\tan ^{ - 1}}A - {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = {\tan ^{ - 1}}A - \dfrac{\pi }{2}$ So, use this property in equation (2) we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2} = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right) - \dfrac{\pi }{2} + \dfrac{\pi }{2}$
$ = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right)$
= R.H.S
Hence Proved.
Note: Whenever we face such proving questions involving trigonometric identities the key point is simply to have the understanding of basic inverse trigonometric identities, some of them are mentioned above. The knowledge of these identities will help you get on the right track to reach the answer.
Complete step-by-step answer:
Given equation is
${\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)$
Now consider L.H.S
$ \Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right)$……….. (1)
As we know that ${\cot ^{ - 1}}A + {\tan ^{ - 1}}A = \dfrac{\pi }{2}$.
$ \Rightarrow {\cot ^{ - 1}}A = \dfrac{\pi }{2} - {\tan ^{ - 1}}A$
So, use this property in equation (1) we have,
$ \Rightarrow {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}\left( {x + 1} \right)$
$ = {\tan ^{ - 1}}x - {\tan ^{ - 1}}\left( {x + 1} \right) + \dfrac{\pi }{2}$
Now as we know that ${\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right)$ so, use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - x - 1}}{{1 + x\left( {x + 1} \right)}}} \right) + \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2}$……….. (2)
Now as we know ${\tan ^{ - 1}}A - {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = \dfrac{\pi }{2}$
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = {\tan ^{ - 1}}A - \dfrac{\pi }{2}$ So, use this property in equation (2) we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2} = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right) - \dfrac{\pi }{2} + \dfrac{\pi }{2}$
$ = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right)$
= R.H.S
Hence Proved.
Note: Whenever we face such proving questions involving trigonometric identities the key point is simply to have the understanding of basic inverse trigonometric identities, some of them are mentioned above. The knowledge of these identities will help you get on the right track to reach the answer.
Recently Updated Pages
Oxidation number of N in NH4NO3is A3 B+5 C3 and +5 class 11 chemistry CBSE
Write the main reasons for the stability of colloidal class 11 chemistry CBSE
One difference between a Formal Letter and an informal class null english null
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE