# Prove that the expression ${\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)$.

Last updated date: 21st Mar 2023

•

Total views: 306k

•

Views today: 3.85k

Answer

Verified

306k+ views

Hint: We need to prove that in the given expression the left hand side is equal to the right hand side. Use the basic inverse trigonometric identities involving ${\tan ^{ - 1}}x$ and ${\cot ^{ - 1}}\left( {x + 1} \right)$ such that sum of these two is equal to $\dfrac{\pi }{2}$ along with the basic formula involving addition and subtraction of two ${\tan ^{ - 1}}{\text{entities}}$ to get the proof.

Complete step-by-step answer:

Given equation is

${\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)$

Now consider L.H.S

$ \Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right)$……….. (1)

As we know that ${\cot ^{ - 1}}A + {\tan ^{ - 1}}A = \dfrac{\pi }{2}$.

$ \Rightarrow {\cot ^{ - 1}}A = \dfrac{\pi }{2} - {\tan ^{ - 1}}A$

So, use this property in equation (1) we have,

$ \Rightarrow {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}\left( {x + 1} \right)$

$ = {\tan ^{ - 1}}x - {\tan ^{ - 1}}\left( {x + 1} \right) + \dfrac{\pi }{2}$

Now as we know that ${\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right)$ so, use this property in above equation we have,

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - x - 1}}{{1 + x\left( {x + 1} \right)}}} \right) + \dfrac{\pi }{2}$

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2}$……….. (2)

Now as we know ${\tan ^{ - 1}}A - {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = \dfrac{\pi }{2}$

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = {\tan ^{ - 1}}A - \dfrac{\pi }{2}$ So, use this property in equation (2) we have,

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2} = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right) - \dfrac{\pi }{2} + \dfrac{\pi }{2}$

$ = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right)$

= R.H.S

Hence Proved.

Note: Whenever we face such proving questions involving trigonometric identities the key point is simply to have the understanding of basic inverse trigonometric identities, some of them are mentioned above. The knowledge of these identities will help you get on the right track to reach the answer.

Complete step-by-step answer:

Given equation is

${\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right) = {\tan ^{ - 1}}\left( {{x^2} + x + 1} \right)$

Now consider L.H.S

$ \Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\left( {x + 1} \right)$……….. (1)

As we know that ${\cot ^{ - 1}}A + {\tan ^{ - 1}}A = \dfrac{\pi }{2}$.

$ \Rightarrow {\cot ^{ - 1}}A = \dfrac{\pi }{2} - {\tan ^{ - 1}}A$

So, use this property in equation (1) we have,

$ \Rightarrow {\tan ^{ - 1}}x + \dfrac{\pi }{2} - {\tan ^{ - 1}}\left( {x + 1} \right)$

$ = {\tan ^{ - 1}}x - {\tan ^{ - 1}}\left( {x + 1} \right) + \dfrac{\pi }{2}$

Now as we know that ${\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right)$ so, use this property in above equation we have,

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{x - x - 1}}{{1 + x\left( {x + 1} \right)}}} \right) + \dfrac{\pi }{2}$

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2}$……….. (2)

Now as we know ${\tan ^{ - 1}}A - {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = \dfrac{\pi }{2}$

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{A}} \right) = {\tan ^{ - 1}}A - \dfrac{\pi }{2}$ So, use this property in equation (2) we have,

$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{1 + x + {x^2}}}} \right) + \dfrac{\pi }{2} = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right) - \dfrac{\pi }{2} + \dfrac{\pi }{2}$

$ = {\tan ^{ - 1}}\left( {1 + x + {x^2}} \right)$

= R.H.S

Hence Proved.

Note: Whenever we face such proving questions involving trigonometric identities the key point is simply to have the understanding of basic inverse trigonometric identities, some of them are mentioned above. The knowledge of these identities will help you get on the right track to reach the answer.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE