
Prove that $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3$.
Answer
508.5k+ views
Hint: First, break $\tan 80^\circ $ and $\tan 20^\circ $ in terms of $\tan 60^\circ $ and $\tan 20^\circ $ by using a basic formula $\tan \left( {A \pm B} \right) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}$. After that multiply both the equations and simplify it. Again, multiply by $\tan 20^\circ $ and simplify it. The equation will be in the form $\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}$ which can be replaced by $\tan 3A$. Now, the term \[\tan 20^\circ \tan 40^\circ \tan 80^\circ \] will be equal to $\tan 60^\circ $. So, the term\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ \] is equal to ${\left( {\tan 60^\circ } \right)^2}$ whose value is 3.
Formula used:
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
$\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}$
Complete step-by-step answer:
To prove:- $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3$
Break-in terms of $\tan 20^\circ $ and $\tan 60^\circ $ by using $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$,
\[\tan 80^\circ = \dfrac{{\tan 60^\circ + \tan 20^\circ }}{{1 - \tan 60^\circ \tan 20^\circ }}\]
Substitute $\tan 60^\circ = \sqrt 3 $ we get,
$\tan 80^\circ = \dfrac{{\sqrt 3 + \tan 20^\circ }}{{1 - \sqrt 3 \tan 20^\circ }}$ …..(1)
Now, break-in $\tan 40^\circ $ in terms of $\tan 20^\circ $ and $\tan 60^\circ $ by using $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$,
\[\tan 40^\circ = \dfrac{{\tan 60^\circ - \tan 20^\circ }}{{1 + \tan 60^\circ \tan 20^\circ }}\]
Substitute $\tan 60^\circ = \sqrt 3 $ we get,
$\tan 40^\circ = \dfrac{{\sqrt 3 - \tan 20^\circ }}{{1 + \sqrt 3 \tan 20^\circ }}$ …..(2)
Now multiply equation (1) and (2),
$\tan 40^\circ \tan 80^\circ = \dfrac{{\sqrt 3 - \tan 20^\circ }}{{1 + \sqrt 3 \tan 20^\circ }} \times \dfrac{{\sqrt 3 + \tan 20^\circ }}{{1 - \sqrt 3 \tan 20^\circ }}$
Multiply the values of the numerator and denominator,
$\tan 40^\circ \tan 80^\circ = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( {\tan 20^\circ } \right)}^2}}}{{{{\left( 1 \right)}^2} - {{\left( {\sqrt 3 \tan 20^\circ } \right)}^2}}}$
Open brackets and square the terms inside corresponding brackets,
$\tan 40^\circ \tan 80^\circ = \dfrac{{3 - {{\tan }^2}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}$
Multiply both sides by $\tan 20^\circ $,
$\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 20^\circ \times \dfrac{{3 - {{\tan }^2}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}$
Multiply $\tan 20^\circ $ in the numerator,
\[\tan 20^\circ \tan 40^\circ \tan 80^\circ = \dfrac{{3\tan 20^\circ - {{\tan }^3}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}\]
As we know that $\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}$. Then, the term in the right-hand side will be replaced,
\[\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan \left( {3 \times 20^\circ } \right)\]
Multiply both sides by $\tan 60^\circ $ we get,
\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = {\left( {\tan 60^\circ } \right)^2}\]
Substitute the value of \[\tan 60^\circ \] on the right side of the equation,
\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = {\left( {\sqrt 3 } \right)^2}\]
Open the bracket and square the term on the right side,
\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3\]
Hence, it is proved.
Note: The students are likely to make mistakes by converting tan in form of sin and cos. It will make the problem complicated and lengthy.
Trigonometry is concerned with specific functions of angles and their application to calculations. There are six functions of an angle commonly used in trigonometry. Their names and abbreviations are sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (cosec).
Formula used:
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
$\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
$\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}$
Complete step-by-step answer:
To prove:- $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3$
Break-in terms of $\tan 20^\circ $ and $\tan 60^\circ $ by using $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$,
\[\tan 80^\circ = \dfrac{{\tan 60^\circ + \tan 20^\circ }}{{1 - \tan 60^\circ \tan 20^\circ }}\]
Substitute $\tan 60^\circ = \sqrt 3 $ we get,
$\tan 80^\circ = \dfrac{{\sqrt 3 + \tan 20^\circ }}{{1 - \sqrt 3 \tan 20^\circ }}$ …..(1)
Now, break-in $\tan 40^\circ $ in terms of $\tan 20^\circ $ and $\tan 60^\circ $ by using $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$,
\[\tan 40^\circ = \dfrac{{\tan 60^\circ - \tan 20^\circ }}{{1 + \tan 60^\circ \tan 20^\circ }}\]
Substitute $\tan 60^\circ = \sqrt 3 $ we get,
$\tan 40^\circ = \dfrac{{\sqrt 3 - \tan 20^\circ }}{{1 + \sqrt 3 \tan 20^\circ }}$ …..(2)
Now multiply equation (1) and (2),
$\tan 40^\circ \tan 80^\circ = \dfrac{{\sqrt 3 - \tan 20^\circ }}{{1 + \sqrt 3 \tan 20^\circ }} \times \dfrac{{\sqrt 3 + \tan 20^\circ }}{{1 - \sqrt 3 \tan 20^\circ }}$
Multiply the values of the numerator and denominator,
$\tan 40^\circ \tan 80^\circ = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( {\tan 20^\circ } \right)}^2}}}{{{{\left( 1 \right)}^2} - {{\left( {\sqrt 3 \tan 20^\circ } \right)}^2}}}$
Open brackets and square the terms inside corresponding brackets,
$\tan 40^\circ \tan 80^\circ = \dfrac{{3 - {{\tan }^2}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}$
Multiply both sides by $\tan 20^\circ $,
$\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 20^\circ \times \dfrac{{3 - {{\tan }^2}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}$
Multiply $\tan 20^\circ $ in the numerator,
\[\tan 20^\circ \tan 40^\circ \tan 80^\circ = \dfrac{{3\tan 20^\circ - {{\tan }^3}20^\circ }}{{1 - 3{{\tan }^2}20^\circ }}\]
As we know that $\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}$. Then, the term in the right-hand side will be replaced,
\[\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan \left( {3 \times 20^\circ } \right)\]
Multiply both sides by $\tan 60^\circ $ we get,
\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = {\left( {\tan 60^\circ } \right)^2}\]
Substitute the value of \[\tan 60^\circ \] on the right side of the equation,
\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = {\left( {\sqrt 3 } \right)^2}\]
Open the bracket and square the term on the right side,
\[\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3\]
Hence, it is proved.
Note: The students are likely to make mistakes by converting tan in form of sin and cos. It will make the problem complicated and lengthy.
Trigonometry is concerned with specific functions of angles and their application to calculations. There are six functions of an angle commonly used in trigonometry. Their names and abbreviations are sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (cosec).
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
