
Prove that \[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}\]
Answer
595.2k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step-by-step answer:
Now considering L.H.S
\[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)\]
As we can see we have to use \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
Using the formula,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]and \[y=\dfrac{1}{5}\]
Substituting \[x=\dfrac{1}{7}\]and \[y=\dfrac{1}{8}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{3}+\dfrac{1}{5}}{1-\left( \dfrac{1}{3} \right)\left( \dfrac{1}{5} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\left( \dfrac{1}{7} \right)\left( \dfrac{1}{8} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{5+3}{15}}{\dfrac{14}{15}} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{\dfrac{55}{56}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{15}{55} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Further solving (2) we get (3)
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{3}{11} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{8}{14}+\dfrac{3}{11}}{1-\left( \dfrac{8}{14} \right)\left( \dfrac{3}{11} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{130}{154}}{\dfrac{130}{154}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: If \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\], therefore it is always important to check the multiplication of $x$ and $y$ for every step , though here we did not do it because we could in the starting only that from initial only both $x$ and $y$ are less than 1 so their multiplication will always be less than 1.
Complete step-by-step answer:
Now considering L.H.S
\[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)\]
As we can see we have to use \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
Using the formula,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]and \[y=\dfrac{1}{5}\]
Substituting \[x=\dfrac{1}{7}\]and \[y=\dfrac{1}{8}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{3}+\dfrac{1}{5}}{1-\left( \dfrac{1}{3} \right)\left( \dfrac{1}{5} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\left( \dfrac{1}{7} \right)\left( \dfrac{1}{8} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{5+3}{15}}{\dfrac{14}{15}} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{\dfrac{55}{56}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{15}{55} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Further solving (2) we get (3)
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{3}{11} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{8}{14}+\dfrac{3}{11}}{1-\left( \dfrac{8}{14} \right)\left( \dfrac{3}{11} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{130}{154}}{\dfrac{130}{154}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: If \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\], therefore it is always important to check the multiplication of $x$ and $y$ for every step , though here we did not do it because we could in the starting only that from initial only both $x$ and $y$ are less than 1 so their multiplication will always be less than 1.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

