
Prove that \[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}\]
Answer
511.5k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step-by-step answer:
Now considering L.H.S
\[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)\]
As we can see we have to use \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
Using the formula,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]and \[y=\dfrac{1}{5}\]
Substituting \[x=\dfrac{1}{7}\]and \[y=\dfrac{1}{8}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{3}+\dfrac{1}{5}}{1-\left( \dfrac{1}{3} \right)\left( \dfrac{1}{5} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\left( \dfrac{1}{7} \right)\left( \dfrac{1}{8} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{5+3}{15}}{\dfrac{14}{15}} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{\dfrac{55}{56}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{15}{55} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Further solving (2) we get (3)
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{3}{11} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{8}{14}+\dfrac{3}{11}}{1-\left( \dfrac{8}{14} \right)\left( \dfrac{3}{11} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{130}{154}}{\dfrac{130}{154}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: If \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\], therefore it is always important to check the multiplication of $x$ and $y$ for every step , though here we did not do it because we could in the starting only that from initial only both $x$ and $y$ are less than 1 so their multiplication will always be less than 1.
Complete step-by-step answer:
Now considering L.H.S
\[{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)\]
As we can see we have to use \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
Using the formula,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]and \[y=\dfrac{1}{5}\]
Substituting \[x=\dfrac{1}{7}\]and \[y=\dfrac{1}{8}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{1}{3}+\dfrac{1}{5}}{1-\left( \dfrac{1}{3} \right)\left( \dfrac{1}{5} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\left( \dfrac{1}{7} \right)\left( \dfrac{1}{8} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{5+3}{15}}{\dfrac{14}{15}} \right)+{{\tan }^{-1}}\left( \dfrac{\dfrac{8+7}{56}}{\dfrac{55}{56}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{15}{55} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Further solving (2) we get (3)
\[={{\tan }^{-1}}\left( \dfrac{8}{14} \right)+{{\tan }^{-1}}\left( \dfrac{3}{11} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{8}{14}+\dfrac{3}{11}}{1-\left( \dfrac{8}{14} \right)\left( \dfrac{3}{11} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{130}{154}}{\dfrac{130}{154}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: If \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\], therefore it is always important to check the multiplication of $x$ and $y$ for every step , though here we did not do it because we could in the starting only that from initial only both $x$ and $y$ are less than 1 so their multiplication will always be less than 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
