
${\text{Prove that }}\tan {15^ \circ } + \tan {30^ \circ } + \tan {15^ \circ }\tan {30^ \circ } = 1$
Answer
602.4k+ views
$
\\
{\text{We know that tan4}}{{\text{5}}^ \circ } = 1 \\
{\text{We can write tan4}}{{\text{5}}^ \circ } = \tan ({30^ \circ } + {15^ \circ }) \\
{\text{We also know that tan(}}A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} \\
{\text{By using this we can write }} \\
\Rightarrow \tan ({30^ \circ } + {15^ \circ }) = \dfrac{{\tan {{30}^ \circ } + \tan {{15}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{15}^ \circ }}} = \tan {45^ \circ } = 1 \\
{\text{By solving above equation}} \\
\tan {30^ \circ } + \tan {15^ \circ } = 1 - \tan {30^ \circ }\tan {15^ \circ } \\
{\text{By rearranging the equation we get the result}} \\
\tan {30^ \circ } + \tan {15^ \circ } + \tan {30^ \circ }\tan {15^ \circ } = 1{\text{ }}proved \\
{\text{Note: - In such type of question always try to apply the formula of tan(}}A + B){\text{ or tan(}}A - B) \\
{\text{ and put the angles that are given in question so you can prove it}}{\text{.}} \\
$
\\
{\text{We know that tan4}}{{\text{5}}^ \circ } = 1 \\
{\text{We can write tan4}}{{\text{5}}^ \circ } = \tan ({30^ \circ } + {15^ \circ }) \\
{\text{We also know that tan(}}A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} \\
{\text{By using this we can write }} \\
\Rightarrow \tan ({30^ \circ } + {15^ \circ }) = \dfrac{{\tan {{30}^ \circ } + \tan {{15}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{15}^ \circ }}} = \tan {45^ \circ } = 1 \\
{\text{By solving above equation}} \\
\tan {30^ \circ } + \tan {15^ \circ } = 1 - \tan {30^ \circ }\tan {15^ \circ } \\
{\text{By rearranging the equation we get the result}} \\
\tan {30^ \circ } + \tan {15^ \circ } + \tan {30^ \circ }\tan {15^ \circ } = 1{\text{ }}proved \\
{\text{Note: - In such type of question always try to apply the formula of tan(}}A + B){\text{ or tan(}}A - B) \\
{\text{ and put the angles that are given in question so you can prove it}}{\text{.}} \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

