
Prove that \[\sin \theta < \theta < \tan \theta \] for \[\theta \in (0,\dfrac{\pi }{2})\].
Answer
483.3k+ views
Hint: We will consider a unit circle to prove our given equation. Then we consider a two triangle as per our own interest to find the values of \[\sin \theta \] and \[\tan \theta \].
Complete step-by-step answer:
Here we are trying to consider a circle with unit radius with the centre at the origin.
Then we choose a point C on the circumference and another point B on the intersection of the circle and the x axis. Then we draw a perpendicular line from B which is parallel to y axis. We join OC with the perpendicular line in a point D.
Now, the point C is given at random,
From the figure, for any position of C on the circle,
Area of \[\Delta OBC\] < Area of sector OBC< Area of \[\Delta OBD\]
Using the corresponding formulae, the area of the triangle, \[\dfrac{1}{2}\].height. base
so, area of \[\Delta OBC\]\[ = \dfrac{1}{2}.CE.OB\], where CE is the height of the triangle of \[\Delta OBC\]
and area of \[\Delta OBD\]\[ = \dfrac{1}{2}.DB.OB\]
and the area of sector OBC, = \[\dfrac{1}{2}\]. Angle made by the sector OBC. \[ = \dfrac{1}{2}.\theta \]
so, now we have,
\[ = \dfrac{1}{2}.CE.OB < \dfrac{1}{2}.\theta < \dfrac{1}{2}.DB.OB\]
As, for the triangle OCE, \[\sin \theta = \dfrac{{CE}}{{OC}} = \dfrac{{CE}}{1} = CE\]
And for the triangle ODB, \[\tan \theta = \dfrac{{DB}}{{OB}} = \dfrac{{DB}}{1} = DB\]
As, \[OC = OB = 1\]as this is a unit circle,
\[ = \dfrac{1}{2}.\sin \theta .1 < \dfrac{1}{2}.\theta < \dfrac{1}{2}.\tan \theta .1\]
Cancelling out from \[\dfrac{1}{2}\] all of them, we get,
\[ = \sin \theta < \theta < \tan \theta \] for \[\theta \in \left( {0,\pi /2} \right)\]
Note: In some cases we have also \[\sin \theta = \theta \].The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians.
Complete step-by-step answer:

Here we are trying to consider a circle with unit radius with the centre at the origin.
Then we choose a point C on the circumference and another point B on the intersection of the circle and the x axis. Then we draw a perpendicular line from B which is parallel to y axis. We join OC with the perpendicular line in a point D.
Now, the point C is given at random,
From the figure, for any position of C on the circle,
Area of \[\Delta OBC\] < Area of sector OBC< Area of \[\Delta OBD\]
Using the corresponding formulae, the area of the triangle, \[\dfrac{1}{2}\].height. base
so, area of \[\Delta OBC\]\[ = \dfrac{1}{2}.CE.OB\], where CE is the height of the triangle of \[\Delta OBC\]
and area of \[\Delta OBD\]\[ = \dfrac{1}{2}.DB.OB\]
and the area of sector OBC, = \[\dfrac{1}{2}\]. Angle made by the sector OBC. \[ = \dfrac{1}{2}.\theta \]
so, now we have,
\[ = \dfrac{1}{2}.CE.OB < \dfrac{1}{2}.\theta < \dfrac{1}{2}.DB.OB\]
As, for the triangle OCE, \[\sin \theta = \dfrac{{CE}}{{OC}} = \dfrac{{CE}}{1} = CE\]
And for the triangle ODB, \[\tan \theta = \dfrac{{DB}}{{OB}} = \dfrac{{DB}}{1} = DB\]
As, \[OC = OB = 1\]as this is a unit circle,
\[ = \dfrac{1}{2}.\sin \theta .1 < \dfrac{1}{2}.\theta < \dfrac{1}{2}.\tan \theta .1\]
Cancelling out from \[\dfrac{1}{2}\] all of them, we get,
\[ = \sin \theta < \theta < \tan \theta \] for \[\theta \in \left( {0,\pi /2} \right)\]
Note: In some cases we have also \[\sin \theta = \theta \].The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

Distinguish between Mitosis and Meiosis class 11 biology CBSE
