Answer
Verified
494.7k+ views
Hint: Use the formula for \[\sin A+\sin B\]. Take \[\sin 50+\sin 10\], simplify it using the formula and substitute it back in the equation. Use the cosine function of trigonometry to solve the rest.
Complete step-by-step answer:
We need to prove that, \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0-\left( 1 \right)\]
We know the formula of \[\sin A+\sin B\].
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
Let us take \[\sin 50+\sin 10\], where A=50 and B=10.
\[\sin 50+\sin 10=2\sin \left( \dfrac{50+10}{2} \right)\cos \left( \dfrac{50-10}{2} \right)\]
\[\begin{align}
& \sin 50+\sin 10=2\sin \left( \dfrac{60}{2} \right)\cos \left( \dfrac{40}{2} \right) \\
& \sin 50+\sin 10=2\sin 30\cos 20 \\
\end{align}\]
We know the value of, \[\sin 30=\dfrac{1}{2}\]
\[\begin{align}
&\therefore 2\sin 30\cos 20=2\times \dfrac{1}{2}\times \cos 20=\cos 20 \\
&\therefore \sin 50+\sin 10=\cos 20-(2) \\
\end{align}\]
Put, \[\sin 50+\sin 10=\cos 20\]in equation (1).
\[\therefore \cos 20-\sin 70-(4)\]
By using the trigonometric cosine function,
\[\begin{align}
& \cos \left( 90-\theta \right)=\sin \theta \\
& \cos 20=\cos \left( 90-70 \right)=\sin 70 \\
\end{align}\]
\[\therefore \]We got the value of \[\cos 20=\sin 70\].
Substitute \[\cos 20=\sin 70\]in equation (4), we get
\[\sin 70-\sin 70=0\]
\[\therefore \]We proved that \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0\]
Note: We can also solve by using the formulae,
\[\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B \\
\end{align}\]
\[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}\]can be written as,
\[\begin{align}
& \sin \left( 60-10 \right)=\sin 60\cos 10-\cos 60\sin 10 \\
& \sin \left( 60+10 \right)=\sin 60\cos 10+\cos 60\sin 10 \\
\end{align}\]
\[\therefore \sin \left( 60-10 \right)-\sin \left( 60+10 \right)+\sin 10=\sin 60\cos 10-\cos 60\sin 10-\sin 60\cos 10-\cos 60\sin 10+\sin 10\]
[Cancel out like terms]
\[\begin{align}
& =-2\cos 60\sin 10+\sin 10 \\
& \because \cos 60=\dfrac{1}{2} \\
& =-2\times \dfrac{1}{2}\sin 10+\sin 10=-\sin 10+\sin 10=0 \\
& \therefore \sin 50-\sin 70+\sin 10=0 \\
\end{align}\]
Complete step-by-step answer:
We need to prove that, \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0-\left( 1 \right)\]
We know the formula of \[\sin A+\sin B\].
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
Let us take \[\sin 50+\sin 10\], where A=50 and B=10.
\[\sin 50+\sin 10=2\sin \left( \dfrac{50+10}{2} \right)\cos \left( \dfrac{50-10}{2} \right)\]
\[\begin{align}
& \sin 50+\sin 10=2\sin \left( \dfrac{60}{2} \right)\cos \left( \dfrac{40}{2} \right) \\
& \sin 50+\sin 10=2\sin 30\cos 20 \\
\end{align}\]
We know the value of, \[\sin 30=\dfrac{1}{2}\]
\[\begin{align}
&\therefore 2\sin 30\cos 20=2\times \dfrac{1}{2}\times \cos 20=\cos 20 \\
&\therefore \sin 50+\sin 10=\cos 20-(2) \\
\end{align}\]
Put, \[\sin 50+\sin 10=\cos 20\]in equation (1).
\[\therefore \cos 20-\sin 70-(4)\]
By using the trigonometric cosine function,
\[\begin{align}
& \cos \left( 90-\theta \right)=\sin \theta \\
& \cos 20=\cos \left( 90-70 \right)=\sin 70 \\
\end{align}\]
\[\therefore \]We got the value of \[\cos 20=\sin 70\].
Substitute \[\cos 20=\sin 70\]in equation (4), we get
\[\sin 70-\sin 70=0\]
\[\therefore \]We proved that \[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}=0\]
Note: We can also solve by using the formulae,
\[\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B \\
\end{align}\]
\[\sin {{50}^{\circ }}-\sin {{70}^{\circ }}+\sin {{10}^{\circ }}\]can be written as,
\[\begin{align}
& \sin \left( 60-10 \right)=\sin 60\cos 10-\cos 60\sin 10 \\
& \sin \left( 60+10 \right)=\sin 60\cos 10+\cos 60\sin 10 \\
\end{align}\]
\[\therefore \sin \left( 60-10 \right)-\sin \left( 60+10 \right)+\sin 10=\sin 60\cos 10-\cos 60\sin 10-\sin 60\cos 10-\cos 60\sin 10+\sin 10\]
[Cancel out like terms]
\[\begin{align}
& =-2\cos 60\sin 10+\sin 10 \\
& \because \cos 60=\dfrac{1}{2} \\
& =-2\times \dfrac{1}{2}\sin 10+\sin 10=-\sin 10+\sin 10=0 \\
& \therefore \sin 50-\sin 70+\sin 10=0 \\
\end{align}\]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it