
Prove that: ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Answer
607.8k+ views
Hint: First use the formula ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$ on the LHS to get ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$. Then use the formula $\cos \left( -\theta \right)=\cos \left( \theta \right)$ to get${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$. Then find the value of $\cos \left( 120{}^\circ \right)$. Substitute this value and the value of \[\cos \left( 36{}^\circ \right)\] in the obtained expression. The resultant will be equal to the RHS.
Complete step-by-step answer:
In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
For this, we will simplify the LHS.
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
We know that if we have two angles A and B, then:
${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$
Using this formula on the LHS, we get the following:
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)
Now, here we need to calculate $\cos \left( 120{}^\circ \right)$
$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$
Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$
Using this property in the above equation, we will get the following:
\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]
\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]
Now, we will substitute this in the equation (1) to get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].
We will now substitute these values in the above equation to get the following:
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]
Now, we will look at the RHS.
RHS \[=\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS is equal to the RHS.
So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Hence proved.
Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.
Complete step-by-step answer:
In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
For this, we will simplify the LHS.
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
We know that if we have two angles A and B, then:
${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$
Using this formula on the LHS, we get the following:
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)
Now, here we need to calculate $\cos \left( 120{}^\circ \right)$
$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$
Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$
Using this property in the above equation, we will get the following:
\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]
\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]
Now, we will substitute this in the equation (1) to get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].
We will now substitute these values in the above equation to get the following:
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]
Now, we will look at the RHS.
RHS \[=\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS is equal to the RHS.
So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Hence proved.
Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

