Answer

Verified

440.4k+ views

Hint: First use the formula ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$ on the LHS to get ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$. Then use the formula $\cos \left( -\theta \right)=\cos \left( \theta \right)$ to get${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$. Then find the value of $\cos \left( 120{}^\circ \right)$. Substitute this value and the value of \[\cos \left( 36{}^\circ \right)\] in the obtained expression. The resultant will be equal to the RHS.

Complete step-by-step answer:

In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.

For this, we will simplify the LHS.

LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $

We know that if we have two angles A and B, then:

${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$

Using this formula on the LHS, we get the following:

LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$

Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.

Using this property on the above equation, we will get the following:

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)

Now, here we need to calculate $\cos \left( 120{}^\circ \right)$

$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$

Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$

Using this property in the above equation, we will get the following:

\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]

\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]

Now, we will substitute this in the equation (1) to get the following:

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]

Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].

We will now substitute these values in the above equation to get the following:

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]

Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]

Now, we will look at the RHS.

RHS \[=\dfrac{\sqrt{5}+1}{8}\]

Hence, the LHS is equal to the RHS.

So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$

Hence proved.

Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.

Complete step-by-step answer:

In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.

For this, we will simplify the LHS.

LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $

We know that if we have two angles A and B, then:

${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$

Using this formula on the LHS, we get the following:

LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$

Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.

Using this property on the above equation, we will get the following:

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)

Now, here we need to calculate $\cos \left( 120{}^\circ \right)$

$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$

Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$

Using this property in the above equation, we will get the following:

\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]

\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]

Now, we will substitute this in the equation (1) to get the following:

${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]

Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].

We will now substitute these values in the above equation to get the following:

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]

\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]

Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]

Now, we will look at the RHS.

RHS \[=\dfrac{\sqrt{5}+1}{8}\]

Hence, the LHS is equal to the RHS.

So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$

Hence proved.

Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail