
Prove that : $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}$
Answer
611.4k+ views
Hint: Use trigonometry identity $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
and $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
Here we have to prove Left hand side(LHS) equal to Right hand side(RHS).
Let’s take a left hand side of the question.
$LHS = \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ $
As we know the value of $\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{2}\left( {\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right)$
Now, multiply by 2 in numerator and denominator
$
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {2\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {2\sin 20^\circ \sin 40^\circ } \right)\sin 80^\circ } \right) \\
$
Use identity $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {40^\circ - 20^\circ } \right) - \cos \left( {40^\circ + 20^\circ } \right)} \right)\sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {20^\circ } \right) - \cos \left( {60^\circ } \right)} \right)\sin 80^\circ } \right) \\
\therefore \cos 60^\circ = \dfrac{1}{2} \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
Use identity $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\sin 100^\circ + \sin 60^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin 100^\circ - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
As we know $\sin \left( {180^\circ - A} \right) = \sin \left( A \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {180^\circ - 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8} \times \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow LHS = \dfrac{3}{{16}} \\
\]
So, $LHS = \dfrac{3}{{16}} = RHS$
Hence proved, $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}$
Note:Whenever we come across these types of problems first substitute the values of known trigonometric angles and collect the rest of trigonometric terms then use the product to sum formulas to convert unknown trigonometric angles to known trigonometric angles .
and $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
Here we have to prove Left hand side(LHS) equal to Right hand side(RHS).
Let’s take a left hand side of the question.
$LHS = \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ $
As we know the value of $\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \dfrac{{\sqrt 3 }}{2}\left( {\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right)$
Now, multiply by 2 in numerator and denominator
$
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {2\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {2\sin 20^\circ \sin 40^\circ } \right)\sin 80^\circ } \right) \\
$
Use identity $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {40^\circ - 20^\circ } \right) - \cos \left( {40^\circ + 20^\circ } \right)} \right)\sin 80^\circ } \right) \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {20^\circ } \right) - \cos \left( {60^\circ } \right)} \right)\sin 80^\circ } \right) \\
\therefore \cos 60^\circ = \dfrac{1}{2} \\
\Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
Use identity $2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\sin 100^\circ + \sin 60^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin 100^\circ - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\]
As we know $\sin \left( {180^\circ - A} \right) = \sin \left( A \right)$
\[
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {180^\circ - 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{8} \times \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow LHS = \dfrac{3}{{16}} \\
\]
So, $LHS = \dfrac{3}{{16}} = RHS$
Hence proved, $\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}$
Note:Whenever we come across these types of problems first substitute the values of known trigonometric angles and collect the rest of trigonometric terms then use the product to sum formulas to convert unknown trigonometric angles to known trigonometric angles .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

