
Prove that \[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \].
Answer
609.3k+ views
Hint- Use the algebraic identity \[\left( {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right)\] and \[\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1\].
According to question Let first rewrite the equation given as below-
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\]
Taking the LHS and rearrange the equation as below
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \]
\[ \Rightarrow {\left( {{{\sec }^2}\theta } \right)^3} - {\left( {{{\tan }^2}\theta } \right)^3} - 3{\sec ^2}\theta {\tan ^2}\theta \] ………. (1)
Now if we clearly look the above equation it is of the form \[{a^3} - {b^3}\] and by algebraic identity we know that \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
So rewriting the equation (1) we get
\[ \Rightarrow \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
Now by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[ \Rightarrow 1\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta - 2{\sec ^2}\theta {\tan ^{^2}}\theta \]
Or, above can be written as
\[ \Rightarrow {\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right)^2}{\left( {{{\tan }^{^2}}\theta - {{\sec }^2}\theta } \right)^2}\]
Again, by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[\
\Rightarrow {\left( 1 \right)^2}{\text{ or }}{\left( { - 1} \right)^2} \\
\Rightarrow 1 \\
\]
Therefore LHS \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\] or we can say\[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \]
Hence Proved.
Note- Whenever this type of question appears always bring the RHS terms to LHS and then solve LHS. Afterwards rearrange the equation such that it makes an algebraic identity [ as in our question we converted the equation \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \] to the form \[{a^3} - {b^3}\]].Remember the trigonometric identity \[\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1\].
According to question Let first rewrite the equation given as below-
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\]
Taking the LHS and rearrange the equation as below
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \]
\[ \Rightarrow {\left( {{{\sec }^2}\theta } \right)^3} - {\left( {{{\tan }^2}\theta } \right)^3} - 3{\sec ^2}\theta {\tan ^2}\theta \] ………. (1)
Now if we clearly look the above equation it is of the form \[{a^3} - {b^3}\] and by algebraic identity we know that \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
So rewriting the equation (1) we get
\[ \Rightarrow \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
Now by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[ \Rightarrow 1\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta - 2{\sec ^2}\theta {\tan ^{^2}}\theta \]
Or, above can be written as
\[ \Rightarrow {\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right)^2}{\left( {{{\tan }^{^2}}\theta - {{\sec }^2}\theta } \right)^2}\]
Again, by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[\
\Rightarrow {\left( 1 \right)^2}{\text{ or }}{\left( { - 1} \right)^2} \\
\Rightarrow 1 \\
\]
Therefore LHS \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\] or we can say\[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \]
Hence Proved.
Note- Whenever this type of question appears always bring the RHS terms to LHS and then solve LHS. Afterwards rearrange the equation such that it makes an algebraic identity [ as in our question we converted the equation \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \] to the form \[{a^3} - {b^3}\]].Remember the trigonometric identity \[\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

