Prove that \[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \].
Last updated date: 20th Mar 2023
•
Total views: 308.7k
•
Views today: 2.87k
Answer
308.7k+ views
Hint- Use the algebraic identity \[\left( {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right)\] and \[\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1\].
According to question Let first rewrite the equation given as below-
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\]
Taking the LHS and rearrange the equation as below
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \]
\[ \Rightarrow {\left( {{{\sec }^2}\theta } \right)^3} - {\left( {{{\tan }^2}\theta } \right)^3} - 3{\sec ^2}\theta {\tan ^2}\theta \] ………. (1)
Now if we clearly look the above equation it is of the form \[{a^3} - {b^3}\] and by algebraic identity we know that \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
So rewriting the equation (1) we get
\[ \Rightarrow \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
Now by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[ \Rightarrow 1\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta - 2{\sec ^2}\theta {\tan ^{^2}}\theta \]
Or, above can be written as
\[ \Rightarrow {\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right)^2}{\left( {{{\tan }^{^2}}\theta - {{\sec }^2}\theta } \right)^2}\]
Again, by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[\
\Rightarrow {\left( 1 \right)^2}{\text{ or }}{\left( { - 1} \right)^2} \\
\Rightarrow 1 \\
\]
Therefore LHS \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\] or we can say\[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \]
Hence Proved.
Note- Whenever this type of question appears always bring the RHS terms to LHS and then solve LHS. Afterwards rearrange the equation such that it makes an algebraic identity [ as in our question we converted the equation \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \] to the form \[{a^3} - {b^3}\]].Remember the trigonometric identity \[\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1\].
According to question Let first rewrite the equation given as below-
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\]
Taking the LHS and rearrange the equation as below
\[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \]
\[ \Rightarrow {\left( {{{\sec }^2}\theta } \right)^3} - {\left( {{{\tan }^2}\theta } \right)^3} - 3{\sec ^2}\theta {\tan ^2}\theta \] ………. (1)
Now if we clearly look the above equation it is of the form \[{a^3} - {b^3}\] and by algebraic identity we know that \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
So rewriting the equation (1) we get
\[ \Rightarrow \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
Now by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[ \Rightarrow 1\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta - 3{\sec ^2}\theta {\tan ^{^2}}\theta \]
\[ \Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta - 2{\sec ^2}\theta {\tan ^{^2}}\theta \]
Or, above can be written as
\[ \Rightarrow {\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right)^2}{\left( {{{\tan }^{^2}}\theta - {{\sec }^2}\theta } \right)^2}\]
Again, by trigonometric identity we know that \[\left\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\}\]
\[\
\Rightarrow {\left( 1 \right)^2}{\text{ or }}{\left( { - 1} \right)^2} \\
\Rightarrow 1 \\
\]
Therefore LHS \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1\] or we can say\[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \]
Hence Proved.
Note- Whenever this type of question appears always bring the RHS terms to LHS and then solve LHS. Afterwards rearrange the equation such that it makes an algebraic identity [ as in our question we converted the equation \[{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta \] to the form \[{a^3} - {b^3}\]].Remember the trigonometric identity \[\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1\].
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
