
Prove that $(p\wedge \neg q)\vee q\vee (\neg p\wedge q)=p\vee q$ by simplification.
Answer
552.3k+ views
Hint: We are asked to solve this question by simplification. So we can start from the left hand side and apply the laws of logic and reach the right hand side.
Formula used: Laws of logic:
(i) Idempotence: \[p\vee p\Leftrightarrow p,p\wedge p\Leftrightarrow p\]
(ii) Commutative: \[p\vee q\Leftrightarrow q\vee p,p\wedge q\Leftrightarrow q\wedge p\]
(iii) Associative: $(p\vee q)\vee r\Leftrightarrow p\vee (q\vee r),(p\wedge q)\wedge r\Leftrightarrow p\wedge (q\wedge r)$
(iv) Distributive: $p\vee (q\wedge r)\Leftrightarrow (p\vee q)\wedge (p\vee r),p\wedge (q\vee r)\Leftrightarrow (p\wedge q)\vee (p\wedge r)$
(vi) Absorption: $p\wedge 1\Leftrightarrow p,p\wedge 0\Leftrightarrow 0$
(vii) Dominance: $p\vee 1\Leftrightarrow 1,p\vee 0\Leftrightarrow p$
Here,$1$ denotes a statement which is always true (tautology) and $0$ denotes a statement which is always false (contradiction).
Complete step by step solution:
To prove left hand side equals right hand side we can start from left side.
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)$
By the associative property of logics we have,
(iii) Associative: $(p\vee q)\vee r\Leftrightarrow p\vee (q\vee r)$
Using this we can combine the first two terms.
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\wedge \neg q)\vee q]\vee (\neg p\wedge q)$
By the distributive property of logic we have,
(iv) Distributive: $p\vee (q\wedge r)\Leftrightarrow (p\vee q)\wedge (p\vee r)$
Using this result in the square bracket we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\vee q)\wedge (\neg q\vee q)]\vee (\neg p\wedge q)$
We know either a statement or its negation is always true.
$\Rightarrow \neg q\vee q\equiv 1$
Using this we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\vee q)\wedge 1]\vee (\neg p\wedge q)$
Then by absorption laws of logic we have,
(vi) Absorption: $p\wedge 1\Leftrightarrow p$
Using this result,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (p\vee q)\vee (\neg p\wedge q)$
Now again applying distributive laws we have,
(iv) Distributive: $p\vee (q\wedge r)\Leftrightarrow (p\vee q)\wedge (p\vee r),p\wedge (q\vee r)\Leftrightarrow (p\wedge q)\vee (p\wedge r)$
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\vee q)\vee \neg p]\wedge [(p\vee q)\vee q]$
By commutative property of logic we have,
(ii) Commutative: \[p\vee q\Leftrightarrow q\vee p\]
Using this we get,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(q\vee p)\vee \neg p]\wedge [(p\vee q)\vee q]$
Again using associative property,
(iii) Associative: \[\left( p\vee q \right)\vee r\Leftrightarrow p\vee \left( q\vee r \right)\]
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [q\vee (p\vee \neg p)]\wedge [(p\vee q)\vee q]$
We know either a statement or its negation is always true.
$\Rightarrow p\vee \neg p\equiv 1$
Using this we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (q\vee 1)\wedge [(p\vee q)\vee q]$
And applying associativity in the square bracket we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (q\vee 1)\wedge [p\vee (q\vee q)]$
For any statements we have
$q\vee q\equiv q\Rightarrow p\vee (q\vee q)=p\vee q$
Using this we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (q\vee 1)\wedge (p\vee q)$
By the laws of dominance we have,
(vii) Dominance: \[p\vee 1\Leftrightarrow 1\]
Using this we get,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv 1\wedge (p\vee q)$
Now again by laws of absorption,
(vi) Absorption: $p\wedge 1\Leftrightarrow p$
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv p\vee q$
So we had reached the right hand side.
$\therefore $ The result is proved.
Note: We can also prove this result with the help of truth tables.
But in the question it is said to use simplification. So we have to use this one. If not mentioned the method precisely we are free to use any one.
Formula used: Laws of logic:
(i) Idempotence: \[p\vee p\Leftrightarrow p,p\wedge p\Leftrightarrow p\]
(ii) Commutative: \[p\vee q\Leftrightarrow q\vee p,p\wedge q\Leftrightarrow q\wedge p\]
(iii) Associative: $(p\vee q)\vee r\Leftrightarrow p\vee (q\vee r),(p\wedge q)\wedge r\Leftrightarrow p\wedge (q\wedge r)$
(iv) Distributive: $p\vee (q\wedge r)\Leftrightarrow (p\vee q)\wedge (p\vee r),p\wedge (q\vee r)\Leftrightarrow (p\wedge q)\vee (p\wedge r)$
(vi) Absorption: $p\wedge 1\Leftrightarrow p,p\wedge 0\Leftrightarrow 0$
(vii) Dominance: $p\vee 1\Leftrightarrow 1,p\vee 0\Leftrightarrow p$
Here,$1$ denotes a statement which is always true (tautology) and $0$ denotes a statement which is always false (contradiction).
Complete step by step solution:
To prove left hand side equals right hand side we can start from left side.
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)$
By the associative property of logics we have,
(iii) Associative: $(p\vee q)\vee r\Leftrightarrow p\vee (q\vee r)$
Using this we can combine the first two terms.
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\wedge \neg q)\vee q]\vee (\neg p\wedge q)$
By the distributive property of logic we have,
(iv) Distributive: $p\vee (q\wedge r)\Leftrightarrow (p\vee q)\wedge (p\vee r)$
Using this result in the square bracket we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\vee q)\wedge (\neg q\vee q)]\vee (\neg p\wedge q)$
We know either a statement or its negation is always true.
$\Rightarrow \neg q\vee q\equiv 1$
Using this we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\vee q)\wedge 1]\vee (\neg p\wedge q)$
Then by absorption laws of logic we have,
(vi) Absorption: $p\wedge 1\Leftrightarrow p$
Using this result,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (p\vee q)\vee (\neg p\wedge q)$
Now again applying distributive laws we have,
(iv) Distributive: $p\vee (q\wedge r)\Leftrightarrow (p\vee q)\wedge (p\vee r),p\wedge (q\vee r)\Leftrightarrow (p\wedge q)\vee (p\wedge r)$
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(p\vee q)\vee \neg p]\wedge [(p\vee q)\vee q]$
By commutative property of logic we have,
(ii) Commutative: \[p\vee q\Leftrightarrow q\vee p\]
Using this we get,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [(q\vee p)\vee \neg p]\wedge [(p\vee q)\vee q]$
Again using associative property,
(iii) Associative: \[\left( p\vee q \right)\vee r\Leftrightarrow p\vee \left( q\vee r \right)\]
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv [q\vee (p\vee \neg p)]\wedge [(p\vee q)\vee q]$
We know either a statement or its negation is always true.
$\Rightarrow p\vee \neg p\equiv 1$
Using this we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (q\vee 1)\wedge [(p\vee q)\vee q]$
And applying associativity in the square bracket we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (q\vee 1)\wedge [p\vee (q\vee q)]$
For any statements we have
$q\vee q\equiv q\Rightarrow p\vee (q\vee q)=p\vee q$
Using this we have,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv (q\vee 1)\wedge (p\vee q)$
By the laws of dominance we have,
(vii) Dominance: \[p\vee 1\Leftrightarrow 1\]
Using this we get,
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv 1\wedge (p\vee q)$
Now again by laws of absorption,
(vi) Absorption: $p\wedge 1\Leftrightarrow p$
$(p\wedge \neg q)\vee q\vee (\neg p\wedge q)\equiv p\vee q$
So we had reached the right hand side.
$\therefore $ The result is proved.
Note: We can also prove this result with the help of truth tables.
| \[p\] | \[q\] | \[\tilde{\ }p\] | \[p\to q\] | \[\tilde{\ }pVq\] |
| \[T\] | \[T\] | \[F\] | \[T\] | \[T\] |
| \[T\] | \[F\] | \[F\] | \[F\] | \[F\] |
| \[F\] | \[T\] | \[T\] | \[T\] | \[T\] |
| \[F\] | \[F\] | \[T\] | \[T\] | \[T\] |
But in the question it is said to use simplification. So we have to use this one. If not mentioned the method precisely we are free to use any one.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

