Answer

Verified

374.4k+ views

**Hint:**These types of problems are pretty straight forward and are very easy to solve. For problems like these we need to remember all the concepts of the theory of limits including the first principle. According to the first principle of limits, say we have a function \[f\left( x \right)\] and we consider a point on this curve as \[\left( x,f\left( x \right) \right)\] and another point \[\left( x+h,f\left( x+h \right) \right)\] where \[h\] is an infinitesimal quantity, then the derivative of the function \[f\left( x \right)\] is defined as,

\[{{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]

Now, for any limit value to exist, both the value of the left hand limit and the right hand limit must be equal.

**Complete step by step answer:**

Now, we start off the solution to the given problem by writing that,

We consider the given function\[f\left( x \right)=\left| x \right|\]. Using the first principle of derivatives, we can write,

\[{{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{\left| x+h \right|-\left| x \right|}{h}\]

Now, considering the right hand limit, we consider, \[x\to {{0}^{+}}\], which means \[x\] is approaching \[0\] from the right hand side in the number line. Hence we can write,

\[\begin{align}

& {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{x+h-x}{h} \\

& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{h}{h} \\

\end{align}\]

Evaluating the value of the right hand limit we get,

\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=1\]

Now, considering the left hand limit, we consider, \[x\to {{0}^{-}}\], which means \[x\] is approaching \[0\] from the left hand side in the number line. Hence we can write,

\[\begin{align}

& {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{-\left( x+h \right)-\left( -\left( x \right) \right)}{h} \\

& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{-x-h+x}{h} \\

& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{-h}{h} \\

\end{align}\]

Evaluating the value of the right hand limit we get,

\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=-1\]

Thus from the above evaluations, we get the value of the right hand limit as \[1\] and the left hand limit as \[-1\] . Since the value of the right hand and left limits are not equal, we say that this limit does not exist.

**Note:**For problems like these, we must remember the theory of limits as well as the definition of the first principle for finding derivatives of a function. We can also solve this particular problem in another method, i.e. by using the theory of graphs. If we plot the graph of \[f\left( x \right)=\left| x \right|\] we will see that at point \[x=0\] there is a sharp point edge, and for such pointed edges, the function is non-differentiable. We can apply this concept for any given function to find out the points of non-differentiability very quickly and easily.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail