# Prove that : \[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1 = 1 - 2{\left( {\cos {\text{A}}} \right)^2}\]

Answer

Verified

366k+ views

Hint- Here, we will be using formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ and identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$.

To prove: \[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1 = 1 - 2{\left( {\cos {\text{A}}} \right)^2}\]

Let us simply the left most side of the above equation, we get

\[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left[ {{{\left( {\sin {\text{A}}} \right)}^2}} \right]^2} - {\left[ {{{\left( {\cos {\text{A}}} \right)}^2}} \right]^2}\]

Using formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get

\[ \Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left[ {{{\left( {\sin {\text{A}}} \right)}^2}} \right]^2} - {\left[ {{{\left( {\cos {\text{A}}} \right)}^2}} \right]^2} = \left[ {{{\left( {\sin {\text{A}}} \right)}^2} - {{\left( {\cos {\text{A}}} \right)}^2}} \right]\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2}} \right]\]

Now applying identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$, we get

\[

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = \left[ {{{\left( {\sin {\text{A}}} \right)}^2} - {{\left( {\cos {\text{A}}} \right)}^2}} \right]\left[ 1 \right] = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} \\

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2}{\text{ }} \to {\text{(2)}} \\

\]

Now let us represent the complete RHS of equation (2) in terms of sine trigonometric function alone.

This can be done by using the identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1 \Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2}$

\[

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = {\left( {\sin {\text{A}}} \right)^2} - \left[ {1 - {{\left( {\sin {\text{A}}} \right)}^2}} \right] = {\left( {\sin {\text{A}}} \right)^2} - 1 + {\left( {\sin {\text{A}}} \right)^2} \\

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\

\]

Now let us represent the complete RHS of equation (2) in terms of cosine trigonometric function alone.

This can be done by using the identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1 \Rightarrow {\left( {\sin x} \right)^2} = 1 - {\left( {\cos x} \right)^2}$

\[

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = \left[ {1 - {{\left( {\cos {\text{A}}} \right)}^2}} \right] - {\left( {\cos {\text{A}}} \right)^2} = 1 - {\left( {\cos {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} \\

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 1 - 2{\left( {\cos {\text{A}}} \right)^2}{\text{ }} \to {\text{(4)}} \\

\]

Now combining equations (3) and (4), we can write

\[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1 = 1 - 2{\left( {\cos {\text{A}}} \right)^2}\]

The above equation is the required equation which needs to be proved.

Note- In these types of problems, we simplify the one side of the equation which needs to be proved keeping in mind the trigonometric functions in which the final terms need to be represented.

To prove: \[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1 = 1 - 2{\left( {\cos {\text{A}}} \right)^2}\]

Let us simply the left most side of the above equation, we get

\[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left[ {{{\left( {\sin {\text{A}}} \right)}^2}} \right]^2} - {\left[ {{{\left( {\cos {\text{A}}} \right)}^2}} \right]^2}\]

Using formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get

\[ \Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left[ {{{\left( {\sin {\text{A}}} \right)}^2}} \right]^2} - {\left[ {{{\left( {\cos {\text{A}}} \right)}^2}} \right]^2} = \left[ {{{\left( {\sin {\text{A}}} \right)}^2} - {{\left( {\cos {\text{A}}} \right)}^2}} \right]\left[ {{{\left( {\sin {\text{A}}} \right)}^2} + {{\left( {\cos {\text{A}}} \right)}^2}} \right]\]

Now applying identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$, we get

\[

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = \left[ {{{\left( {\sin {\text{A}}} \right)}^2} - {{\left( {\cos {\text{A}}} \right)}^2}} \right]\left[ 1 \right] = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} \\

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2}{\text{ }} \to {\text{(2)}} \\

\]

Now let us represent the complete RHS of equation (2) in terms of sine trigonometric function alone.

This can be done by using the identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1 \Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2}$

\[

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = {\left( {\sin {\text{A}}} \right)^2} - \left[ {1 - {{\left( {\sin {\text{A}}} \right)}^2}} \right] = {\left( {\sin {\text{A}}} \right)^2} - 1 + {\left( {\sin {\text{A}}} \right)^2} \\

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\

\]

Now let us represent the complete RHS of equation (2) in terms of cosine trigonometric function alone.

This can be done by using the identity ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1 \Rightarrow {\left( {\sin x} \right)^2} = 1 - {\left( {\cos x} \right)^2}$

\[

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = \left[ {1 - {{\left( {\cos {\text{A}}} \right)}^2}} \right] - {\left( {\cos {\text{A}}} \right)^2} = 1 - {\left( {\cos {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} \\

\Rightarrow {\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 1 - 2{\left( {\cos {\text{A}}} \right)^2}{\text{ }} \to {\text{(4)}} \\

\]

Now combining equations (3) and (4), we can write

\[{\left( {\sin {\text{A}}} \right)^4} - {\left( {\cos {\text{A}}} \right)^4} = {\left( {\sin {\text{A}}} \right)^2} - {\left( {\cos {\text{A}}} \right)^2} = 2{\left( {\sin {\text{A}}} \right)^2} - 1 = 1 - 2{\left( {\cos {\text{A}}} \right)^2}\]

The above equation is the required equation which needs to be proved.

Note- In these types of problems, we simplify the one side of the equation which needs to be proved keeping in mind the trigonometric functions in which the final terms need to be represented.

Last updated date: 01st Oct 2023

â€¢

Total views: 366k

â€¢

Views today: 5.66k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE