
Prove that –
\[\left( {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right) = {\left( {\dfrac{{1 - \tan A}}{{1 - \cot A}}} \right)^2} = {\tan ^2}A\]
Answer
618.9k+ views
Hint: Convert the first and the second part of the question individually to the third part . Convert $\cot \theta $ to $\tan \theta $ and then cancel out the equal terms from the numerator and the denominator .
Complete step-by-step answer:
First proving $\left( {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right) = {\tan ^2}A$
$ \Rightarrow \dfrac{{1 + {{\tan }^2}A}}{{1 + \dfrac{1}{{{{\tan }^2}A}}}}$ = ${\tan ^2}A$ ( since $\cot \theta = \dfrac{1}{{\tan \theta }}$ )
$ \Rightarrow \dfrac{{1 + {{\tan }^2}A}}{{\dfrac{{{{\tan }^2}A + 1}}{{{{\tan }^2}A}}}} = {\tan ^2}A$
$ \Rightarrow $ ${\tan ^2}A = {\tan ^2}A$ ( cancelling out the common terms )
LHS = RHS
Now proving ${\left( {\dfrac{{1 - \tan A}}{{1 - \cot A}}} \right)^2} = {\tan ^2}A$
$ \Rightarrow {\left( {\dfrac{{1 - \tan A}}{{1 - \dfrac{1}{{\tan A}}}}} \right)^2} = {\tan ^2}A$ ( since $\cot \theta = \dfrac{1}{{\tan \theta }}$ )
$ \Rightarrow {\left( {\dfrac{{1 - \tan A}}{{\dfrac{{\tan A - 1}}{{\tan A}}}}} \right)^2} = {\tan ^2}A$
$ \Rightarrow $ ${\left( {\tan A} \right)^2} = {\tan ^2}A$ ( cancelling out the common terms )
$ \Rightarrow {\tan ^2}A = {\tan ^2}A$ ( Since ${\left( {\tan A} \right)^2} = {\tan ^2}A$ )
LHS = RHS
Note : In these questions it is advised to simplify the LHS or the RHS according to their complexity of trigonometric functions . Sometimes proving LHS = RHS needs simplification on both sides of the equation . Remember to convert related trigonometric functions to get to the final result.
Complete step-by-step answer:
First proving $\left( {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right) = {\tan ^2}A$
$ \Rightarrow \dfrac{{1 + {{\tan }^2}A}}{{1 + \dfrac{1}{{{{\tan }^2}A}}}}$ = ${\tan ^2}A$ ( since $\cot \theta = \dfrac{1}{{\tan \theta }}$ )
$ \Rightarrow \dfrac{{1 + {{\tan }^2}A}}{{\dfrac{{{{\tan }^2}A + 1}}{{{{\tan }^2}A}}}} = {\tan ^2}A$
$ \Rightarrow $ ${\tan ^2}A = {\tan ^2}A$ ( cancelling out the common terms )
LHS = RHS
Now proving ${\left( {\dfrac{{1 - \tan A}}{{1 - \cot A}}} \right)^2} = {\tan ^2}A$
$ \Rightarrow {\left( {\dfrac{{1 - \tan A}}{{1 - \dfrac{1}{{\tan A}}}}} \right)^2} = {\tan ^2}A$ ( since $\cot \theta = \dfrac{1}{{\tan \theta }}$ )
$ \Rightarrow {\left( {\dfrac{{1 - \tan A}}{{\dfrac{{\tan A - 1}}{{\tan A}}}}} \right)^2} = {\tan ^2}A$
$ \Rightarrow $ ${\left( {\tan A} \right)^2} = {\tan ^2}A$ ( cancelling out the common terms )
$ \Rightarrow {\tan ^2}A = {\tan ^2}A$ ( Since ${\left( {\tan A} \right)^2} = {\tan ^2}A$ )
LHS = RHS
Note : In these questions it is advised to simplify the LHS or the RHS according to their complexity of trigonometric functions . Sometimes proving LHS = RHS needs simplification on both sides of the equation . Remember to convert related trigonometric functions to get to the final result.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

