Answer
Verified
478.5k+ views
Hint- Use the following formulae ${\text{ }}\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
We have to prove
$\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right) = 1$
Consider L.H.S
$\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right)$
As we know
${\text{ }}\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
So, apply these trigonometric properties in above equation
$
\Rightarrow \left( {1 + {{\left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}} \right)\left( {1 - {{\cos }^2}\theta } \right) \\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)\left( {1 - {{\cos }^2}\theta } \right) \\
$
Now we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1,{\text{ }}\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta $
So, apply these trigonometric properties in above equation
$
\Rightarrow \left( {\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)\left( {1 - {{\cos }^2}\theta } \right) = \dfrac{1}{{{{\sin }^2}\theta }}{\sin ^2}\theta \\
= 1 \\
$
= R.H.S
Hence Proved
Note- In such types of questions always remember the general trigonometric identities which are stated above and using these properties simplify the given equation we will get the required answer.
We have to prove
$\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right) = 1$
Consider L.H.S
$\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right)$
As we know
${\text{ }}\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
So, apply these trigonometric properties in above equation
$
\Rightarrow \left( {1 + {{\left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}} \right)\left( {1 - {{\cos }^2}\theta } \right) \\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)\left( {1 - {{\cos }^2}\theta } \right) \\
$
Now we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1,{\text{ }}\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta $
So, apply these trigonometric properties in above equation
$
\Rightarrow \left( {\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)\left( {1 - {{\cos }^2}\theta } \right) = \dfrac{1}{{{{\sin }^2}\theta }}{\sin ^2}\theta \\
= 1 \\
$
= R.H.S
Hence Proved
Note- In such types of questions always remember the general trigonometric identities which are stated above and using these properties simplify the given equation we will get the required answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE