
Prove that \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Answer
546.6k+ views
Hint: We start solving the problem by considering the L.H.S (Left hand side) of the given proof and substituting $\dfrac{1}{\tan \theta }=\cot \theta $ and $\dfrac{1}{\cot \theta }=\tan \theta $ in it. We then make use of the trigonometric identities $\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta $ and $\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta $ to proceed through the problem. We then make use of the results $\sec \theta =\dfrac{1}{\cos \theta }$, $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$ and ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ to proceed further into the problem. We then make the necessary calculations to complete the required proof.
Complete step by step answer:
According to the problem, we need to prove the result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Let us consider the L.H.S (Left Hand Side) and try to prove it equal to the R.H.S (Right Hand Side).
So, we have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\].
We know that $\dfrac{1}{\tan \theta }=\cot \theta $ and $\dfrac{1}{\cot \theta }=\tan \theta $. Let us substitute these results.
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+{{\cot }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)\] ---(1).
We know that $\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta $ and $\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta $. Let us substitute these results in equation (1).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( {{\operatorname{cosec}}^{2}}\theta \right)\left( {{\sec }^{2}}\theta \right)\] ---(2).
We know that $\sec \theta =\dfrac{1}{\cos \theta }$ and $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$. Let us substitute these results in equation (2).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\] ---(3).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (3).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
So, we can see that L.H.S (Left hand side) is equal to R.H.S (Right Hand Side).
∴ We have proved the trigonometric result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Note: We should perform each step carefully in order to complete the proof properly. We can also solve this problem as shown below:
We have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\] ---(4).
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. Let us substitute this results in equation (4).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{1}{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \right)\left( 1+\dfrac{1}{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }} \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$ ---(5).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Let us substitute this in equation (5).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }$ ---(6).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (6).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Complete step by step answer:
According to the problem, we need to prove the result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Let us consider the L.H.S (Left Hand Side) and try to prove it equal to the R.H.S (Right Hand Side).
So, we have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\].
We know that $\dfrac{1}{\tan \theta }=\cot \theta $ and $\dfrac{1}{\cot \theta }=\tan \theta $. Let us substitute these results.
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+{{\cot }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)\] ---(1).
We know that $\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta $ and $\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta $. Let us substitute these results in equation (1).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( {{\operatorname{cosec}}^{2}}\theta \right)\left( {{\sec }^{2}}\theta \right)\] ---(2).
We know that $\sec \theta =\dfrac{1}{\cos \theta }$ and $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$. Let us substitute these results in equation (2).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\] ---(3).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (3).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
So, we can see that L.H.S (Left hand side) is equal to R.H.S (Right Hand Side).
∴ We have proved the trigonometric result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Note: We should perform each step carefully in order to complete the proof properly. We can also solve this problem as shown below:
We have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\] ---(4).
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. Let us substitute this results in equation (4).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{1}{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \right)\left( 1+\dfrac{1}{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }} \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$ ---(5).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Let us substitute this in equation (5).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }$ ---(6).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (6).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

