Prove that \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Answer
Verified
458.4k+ views
Hint: We start solving the problem by considering the L.H.S (Left hand side) of the given proof and substituting $\dfrac{1}{\tan \theta }=\cot \theta $ and $\dfrac{1}{\cot \theta }=\tan \theta $ in it. We then make use of the trigonometric identities $\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta $ and $\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta $ to proceed through the problem. We then make use of the results $\sec \theta =\dfrac{1}{\cos \theta }$, $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$ and ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ to proceed further into the problem. We then make the necessary calculations to complete the required proof.
Complete step by step answer:
According to the problem, we need to prove the result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Let us consider the L.H.S (Left Hand Side) and try to prove it equal to the R.H.S (Right Hand Side).
So, we have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\].
We know that $\dfrac{1}{\tan \theta }=\cot \theta $ and $\dfrac{1}{\cot \theta }=\tan \theta $. Let us substitute these results.
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+{{\cot }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)\] ---(1).
We know that $\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta $ and $\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta $. Let us substitute these results in equation (1).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( {{\operatorname{cosec}}^{2}}\theta \right)\left( {{\sec }^{2}}\theta \right)\] ---(2).
We know that $\sec \theta =\dfrac{1}{\cos \theta }$ and $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$. Let us substitute these results in equation (2).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\] ---(3).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (3).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
So, we can see that L.H.S (Left hand side) is equal to R.H.S (Right Hand Side).
∴ We have proved the trigonometric result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Note: We should perform each step carefully in order to complete the proof properly. We can also solve this problem as shown below:
We have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\] ---(4).
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. Let us substitute this results in equation (4).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{1}{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \right)\left( 1+\dfrac{1}{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }} \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$ ---(5).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Let us substitute this in equation (5).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }$ ---(6).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (6).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Complete step by step answer:
According to the problem, we need to prove the result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Let us consider the L.H.S (Left Hand Side) and try to prove it equal to the R.H.S (Right Hand Side).
So, we have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\].
We know that $\dfrac{1}{\tan \theta }=\cot \theta $ and $\dfrac{1}{\cot \theta }=\tan \theta $. Let us substitute these results.
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+{{\cot }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right)\] ---(1).
We know that $\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta $ and $\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta $. Let us substitute these results in equation (1).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( {{\operatorname{cosec}}^{2}}\theta \right)\left( {{\sec }^{2}}\theta \right)\] ---(2).
We know that $\sec \theta =\dfrac{1}{\cos \theta }$ and $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$. Let us substitute these results in equation (2).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\] ---(3).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (3).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
So, we can see that L.H.S (Left hand side) is equal to R.H.S (Right Hand Side).
∴ We have proved the trigonometric result \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Note: We should perform each step carefully in order to complete the proof properly. We can also solve this problem as shown below:
We have \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)\] ---(4).
We know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. Let us substitute this results in equation (4).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{1}{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \right)\left( 1+\dfrac{1}{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }} \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)$ ---(5).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Let us substitute this in equation (5).
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right)$.
$\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }$ ---(6).
We know that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $. Let us substitute this result in equation (6).
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}\].
\[\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }\].
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE