
Prove that $\int_{0}^{\dfrac{\pi }{2}}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$ for all f.
Answer
573.9k+ views
Hint: Start from the LHS. Use the fact that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$. Hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\dfrac{\left( \sin x+\cos x \right)}{2}dx}$ . Use the fact that if $f\left( 2a-x \right)=f\left( x \right)$, then $\int_{0}^{2a}{f\left( x \right)dx}=2\int_{0}^{a}{f\left( x \right)dx}$ . Hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}$ . Use the fact that $\sin x+\cos x=\sqrt{2}\left( \cos \left( x-\dfrac{\pi }{4} \right) \right)$ and hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( x-\dfrac{\pi }{4} \right)dx}$ . Finally, put $x-\dfrac{\pi }{4}=t$ and hence prove the given result.
Complete step-by-step solution:
Let us take the LHS as $I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)$
We know that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
Hence, we have
$\begin{align}
& I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\
& =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\
\end{align}$
We know that $\sin \left( \pi -x \right)=\sin x$ and $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$
Hence, we have
$I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)$
Adding equation (i) and equation (ii), we get
$2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
We know that if $f\left( x \right)=f\left( 2a-x \right)$, then
Observe that $f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)$
Hence, we have
$2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
Hence, we have
$I=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx$
Multiplying and dividing by $\sqrt{2}$, we get
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx$
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx$
Put $\dfrac{\pi }{4}-x=t$, we have dx = -dt
When x = 0, $t =\dfrac{\pi }{4}$
When $x=\dfrac{\pi }{4}, t=0$
Hence, we have
$\begin{align}
& I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\
& =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\
\end{align}$
We know that the change of variable does not affect a definite integral.
Hence, we have
$I=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$
Q.E.D
Note: The identities $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}}$ and $\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)}$ are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.
Complete step-by-step solution:
Let us take the LHS as $I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)$
We know that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
Hence, we have
$\begin{align}
& I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\
& =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\
\end{align}$
We know that $\sin \left( \pi -x \right)=\sin x$ and $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$
Hence, we have
$I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)$
Adding equation (i) and equation (ii), we get
$2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
We know that if $f\left( x \right)=f\left( 2a-x \right)$, then
Observe that $f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)$
Hence, we have
$2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
Hence, we have
$I=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx$
Multiplying and dividing by $\sqrt{2}$, we get
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx$
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx$
Put $\dfrac{\pi }{4}-x=t$, we have dx = -dt
When x = 0, $t =\dfrac{\pi }{4}$
When $x=\dfrac{\pi }{4}, t=0$
Hence, we have
$\begin{align}
& I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\
& =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\
\end{align}$
We know that the change of variable does not affect a definite integral.
Hence, we have
$I=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$
Q.E.D
Note: The identities $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}}$ and $\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)}$ are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

