
Prove that $\int_{0}^{\dfrac{\pi }{2}}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$ for all f.
Answer
587.7k+ views
Hint: Start from the LHS. Use the fact that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$. Hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\dfrac{\left( \sin x+\cos x \right)}{2}dx}$ . Use the fact that if $f\left( 2a-x \right)=f\left( x \right)$, then $\int_{0}^{2a}{f\left( x \right)dx}=2\int_{0}^{a}{f\left( x \right)dx}$ . Hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}$ . Use the fact that $\sin x+\cos x=\sqrt{2}\left( \cos \left( x-\dfrac{\pi }{4} \right) \right)$ and hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( x-\dfrac{\pi }{4} \right)dx}$ . Finally, put $x-\dfrac{\pi }{4}=t$ and hence prove the given result.
Complete step-by-step solution:
Let us take the LHS as $I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)$
We know that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
Hence, we have
$\begin{align}
& I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\
& =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\
\end{align}$
We know that $\sin \left( \pi -x \right)=\sin x$ and $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$
Hence, we have
$I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)$
Adding equation (i) and equation (ii), we get
$2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
We know that if $f\left( x \right)=f\left( 2a-x \right)$, then
Observe that $f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)$
Hence, we have
$2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
Hence, we have
$I=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx$
Multiplying and dividing by $\sqrt{2}$, we get
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx$
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx$
Put $\dfrac{\pi }{4}-x=t$, we have dx = -dt
When x = 0, $t =\dfrac{\pi }{4}$
When $x=\dfrac{\pi }{4}, t=0$
Hence, we have
$\begin{align}
& I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\
& =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\
\end{align}$
We know that the change of variable does not affect a definite integral.
Hence, we have
$I=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$
Q.E.D
Note: The identities $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}}$ and $\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)}$ are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.
Complete step-by-step solution:
Let us take the LHS as $I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)$
We know that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
Hence, we have
$\begin{align}
& I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\
& =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\
\end{align}$
We know that $\sin \left( \pi -x \right)=\sin x$ and $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$
Hence, we have
$I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)$
Adding equation (i) and equation (ii), we get
$2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
We know that if $f\left( x \right)=f\left( 2a-x \right)$, then
Observe that $f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)$
Hence, we have
$2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
Hence, we have
$I=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx$
Multiplying and dividing by $\sqrt{2}$, we get
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx$
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx$
Put $\dfrac{\pi }{4}-x=t$, we have dx = -dt
When x = 0, $t =\dfrac{\pi }{4}$
When $x=\dfrac{\pi }{4}, t=0$
Hence, we have
$\begin{align}
& I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\
& =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\
\end{align}$
We know that the change of variable does not affect a definite integral.
Hence, we have
$I=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$
Q.E.D
Note: The identities $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}}$ and $\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)}$ are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

