
Prove that $\int_{0}^{\dfrac{\pi }{2}}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$ for all f.
Answer
506.7k+ views
Hint: Start from the LHS. Use the fact that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$. Hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\dfrac{\left( \sin x+\cos x \right)}{2}dx}$ . Use the fact that if $f\left( 2a-x \right)=f\left( x \right)$, then $\int_{0}^{2a}{f\left( x \right)dx}=2\int_{0}^{a}{f\left( x \right)dx}$ . Hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}$ . Use the fact that $\sin x+\cos x=\sqrt{2}\left( \cos \left( x-\dfrac{\pi }{4} \right) \right)$ and hence prove that $\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( x-\dfrac{\pi }{4} \right)dx}$ . Finally, put $x-\dfrac{\pi }{4}=t$ and hence prove the given result.
Complete step-by-step solution:
Let us take the LHS as $I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)$
We know that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
Hence, we have
$\begin{align}
& I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\
& =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\
\end{align}$
We know that $\sin \left( \pi -x \right)=\sin x$ and $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$
Hence, we have
$I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)$
Adding equation (i) and equation (ii), we get
$2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
We know that if $f\left( x \right)=f\left( 2a-x \right)$, then
Observe that $f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)$
Hence, we have
$2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
Hence, we have
$I=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx$
Multiplying and dividing by $\sqrt{2}$, we get
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx$
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx$
Put $\dfrac{\pi }{4}-x=t$, we have dx = -dt
When x = 0, $t =\dfrac{\pi }{4}$
When $x=\dfrac{\pi }{4}, t=0$
Hence, we have
$\begin{align}
& I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\
& =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\
\end{align}$
We know that the change of variable does not affect a definite integral.
Hence, we have
$I=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$
Q.E.D
Note: The identities $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}}$ and $\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)}$ are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.
Complete step-by-step solution:
Let us take the LHS as $I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)$
We know that $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
Hence, we have
$\begin{align}
& I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\
& =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\
\end{align}$
We know that $\sin \left( \pi -x \right)=\sin x$ and $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$
Hence, we have
$I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)$
Adding equation (i) and equation (ii), we get
$2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
We know that if $f\left( x \right)=f\left( 2a-x \right)$, then
Observe that $f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)$
Hence, we have
$2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}$
Hence, we have
$I=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx$
Multiplying and dividing by $\sqrt{2}$, we get
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx$
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$
Hence, we have
$I=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx$
Put $\dfrac{\pi }{4}-x=t$, we have dx = -dt
When x = 0, $t =\dfrac{\pi }{4}$
When $x=\dfrac{\pi }{4}, t=0$
Hence, we have
$\begin{align}
& I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\
& =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\
\end{align}$
We know that the change of variable does not affect a definite integral.
Hence, we have
$I=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}$
Q.E.D
Note: The identities $\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}}$ and $\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)}$ are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
