
Prove that \[{{i}^{-35}}=i\].
Answer
540.9k+ views
Hint: This question belongs to the topic of complex numbers. In this question, we will first understand the value and the symbol of the term iota. After that, we will find out the values of \[i\], \[{{i}^{2}}\], \[{{i}^{3}}\], and \[{{i}^{4}}\]. After that, we will find the value of the inverse of iota. After that, we will prove that \[{{i}^{-35}}=i\] on solving the further process.
Complete step by step answer:
Let's solve this question.
In this question, we have asked to prove that \[{{i}^{-35}}=i\].
Let us first know what iota is.
The symbol for the term iota is \[i\] and the value of the term iota is square root of negative one.
So, we can write
\[i=\sqrt{-1}\]
So, the square of iota will be
\[{{i}^{2}}=i\times i={{\left( \sqrt{-1} \right)}^{2}}=-1\]
The cube of iota will be
\[{{i}^{3}}={{i}^{2}}\times i=\left( -1 \right)\times i=-i\]
The fourth power of iota will be
\[{{i}^{4}}={{i}^{2}}\times {{i}^{2}}=\left( -1 \right)\times \left( -1 \right)=1\]
Now, let us find out the value of inverse of iota that is \[\dfrac{1}{i}\]
Hence, we can write the inverse of iota as
\[{{i}^{-1}}=\dfrac{1}{i}\]
After multiplying iota on numerator and denominator in the right side of the above equation, we get
\[\Rightarrow {{i}^{-1}}=\dfrac{1}{i}\times \dfrac{i}{i}=\dfrac{i}{i\times i}=\dfrac{i}{{{i}^{2}}}\]
As we know that the value of the square of iota is -1, so we can write
\[\Rightarrow {{i}^{-1}}=\dfrac{i}{-1}=-i\]
Hence, we get that the inverse of iota is negative of iota.
Now, let us solve for \[{{i}^{-35}}\].
As we know that, \[{{\left( x \right)}^{a+b}}\] can also be written as \[{{\left( x \right)}^{a+b}}={{x}^{a}}\times {{x}^{b}}\], so we can write the term \[{{i}^{35}}\] as
\[{{i}^{35}}={{i}^{\left( 4+4+4+4+4+4+4+4+4-1 \right)}}={{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{-1}}\]
Putting the value of \[{{i}^{4}}\] as 1 in the above equation, we get
\[\Rightarrow {{i}^{35}}=1\times 1\times 1\times 1\times 1\times 1\times 1\times 1\times 1\times {{i}^{-1}}={{i}^{-1}}\]
\[\Rightarrow {{i}^{35}}={{i}^{-1}}\]
Now, by multiplying -1 in the power to the both side of equation, we get
\[\Rightarrow {{\left( {{i}^{35}} \right)}^{-1}}={{\left( {{i}^{-1}} \right)}^{-1}}\]
Using the formula \[{{\left( {{x}^{a}} \right)}^{b}}={{x}^{a\times b}}\], we can write in the above equation as
\[\Rightarrow {{i}^{-35}}=i\]
Hence, we have proved that \[{{i}^{-35}}=i\].
Note: We can solve this question using an alternate method. Whenever we have to find out the value of iota having greater powers, then we will make that term of iota having greater powers in the form of \[{{i}^{4n+r}}\]. For that, we should remember that \[i=\sqrt{-1}\], \[{{i}^{2}}=-1\], \[{{i}^{3}}=-i\], and \[{{i}^{4}}=1\].
So, we can write \[{{i}^{35}}\] as
\[{{i}^{\left( 35 \right)}}={{i}^{\left( 4\times 8+3 \right)}}={{i}^{\left( 4\times 8 \right)}}{{i}^{\left( 3 \right)}}={{\left( {{i}^{\left( 4 \right)}} \right)}^{8}}{{i}^{\left( 3 \right)}}\]
Using the formula \[{{i}^{3}}=-i\] and \[{{i}^{4}}=1\], we can write
\[\Rightarrow {{i}^{\left( 35 \right)}}={{\left( 1 \right)}^{8}}\left( -i \right)=-i\]
Multiplying -1 to the power in both the sides of the equation, we get
\[\Rightarrow {{i}^{\left( -35 \right)}}={{\left( -i \right)}^{-1}}=-{{\left( i \right)}^{-1}}\]
As we know that inverse of iota is negative of iota, so we can write
\[\Rightarrow {{i}^{-35}}=i\]
Complete step by step answer:
Let's solve this question.
In this question, we have asked to prove that \[{{i}^{-35}}=i\].
Let us first know what iota is.
The symbol for the term iota is \[i\] and the value of the term iota is square root of negative one.
So, we can write
\[i=\sqrt{-1}\]
So, the square of iota will be
\[{{i}^{2}}=i\times i={{\left( \sqrt{-1} \right)}^{2}}=-1\]
The cube of iota will be
\[{{i}^{3}}={{i}^{2}}\times i=\left( -1 \right)\times i=-i\]
The fourth power of iota will be
\[{{i}^{4}}={{i}^{2}}\times {{i}^{2}}=\left( -1 \right)\times \left( -1 \right)=1\]
Now, let us find out the value of inverse of iota that is \[\dfrac{1}{i}\]
Hence, we can write the inverse of iota as
\[{{i}^{-1}}=\dfrac{1}{i}\]
After multiplying iota on numerator and denominator in the right side of the above equation, we get
\[\Rightarrow {{i}^{-1}}=\dfrac{1}{i}\times \dfrac{i}{i}=\dfrac{i}{i\times i}=\dfrac{i}{{{i}^{2}}}\]
As we know that the value of the square of iota is -1, so we can write
\[\Rightarrow {{i}^{-1}}=\dfrac{i}{-1}=-i\]
Hence, we get that the inverse of iota is negative of iota.
Now, let us solve for \[{{i}^{-35}}\].
As we know that, \[{{\left( x \right)}^{a+b}}\] can also be written as \[{{\left( x \right)}^{a+b}}={{x}^{a}}\times {{x}^{b}}\], so we can write the term \[{{i}^{35}}\] as
\[{{i}^{35}}={{i}^{\left( 4+4+4+4+4+4+4+4+4-1 \right)}}={{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{4}}\times {{i}^{-1}}\]
Putting the value of \[{{i}^{4}}\] as 1 in the above equation, we get
\[\Rightarrow {{i}^{35}}=1\times 1\times 1\times 1\times 1\times 1\times 1\times 1\times 1\times {{i}^{-1}}={{i}^{-1}}\]
\[\Rightarrow {{i}^{35}}={{i}^{-1}}\]
Now, by multiplying -1 in the power to the both side of equation, we get
\[\Rightarrow {{\left( {{i}^{35}} \right)}^{-1}}={{\left( {{i}^{-1}} \right)}^{-1}}\]
Using the formula \[{{\left( {{x}^{a}} \right)}^{b}}={{x}^{a\times b}}\], we can write in the above equation as
\[\Rightarrow {{i}^{-35}}=i\]
Hence, we have proved that \[{{i}^{-35}}=i\].
Note: We can solve this question using an alternate method. Whenever we have to find out the value of iota having greater powers, then we will make that term of iota having greater powers in the form of \[{{i}^{4n+r}}\]. For that, we should remember that \[i=\sqrt{-1}\], \[{{i}^{2}}=-1\], \[{{i}^{3}}=-i\], and \[{{i}^{4}}=1\].
So, we can write \[{{i}^{35}}\] as
\[{{i}^{\left( 35 \right)}}={{i}^{\left( 4\times 8+3 \right)}}={{i}^{\left( 4\times 8 \right)}}{{i}^{\left( 3 \right)}}={{\left( {{i}^{\left( 4 \right)}} \right)}^{8}}{{i}^{\left( 3 \right)}}\]
Using the formula \[{{i}^{3}}=-i\] and \[{{i}^{4}}=1\], we can write
\[\Rightarrow {{i}^{\left( 35 \right)}}={{\left( 1 \right)}^{8}}\left( -i \right)=-i\]
Multiplying -1 to the power in both the sides of the equation, we get
\[\Rightarrow {{i}^{\left( -35 \right)}}={{\left( -i \right)}^{-1}}=-{{\left( i \right)}^{-1}}\]
As we know that inverse of iota is negative of iota, so we can write
\[\Rightarrow {{i}^{-35}}=i\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

