Answer
Verified
446.7k+ views
Hint:The question can be started by taking the term $|\overrightarrow a + \overrightarrow b |$ and squaring it. Since, we know that the identity that the square of modulus of a vector is equal to the dot product of it with itself we can use this identity for solving the question.
Complete step-by-step answer:
We are given that $\overrightarrow a $and $\overrightarrow b $are two vectors of triangle and also we need to prove that $|\overrightarrow a + \overrightarrow b | \leqslant |\overrightarrow a | + |\overrightarrow b |$ is true for any value of these two vectors.
We will start of by understanding what this triangle inequality means.
Triangle inequality says that the sum of two sides of a triangle is always greater than the third side. Here the term $|\overrightarrow a + \overrightarrow b |$ is referred to as the third side and $|\overrightarrow a | + |\overrightarrow b |$are the sum of the rest of the two sides.
The question can be started by taking the term $|\overrightarrow a + \overrightarrow b |$ and squaring it. We get,
\[|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )\]……….. Here, the property used is $|\overrightarrow c {|^2} = \overrightarrow {c.} \overrightarrow c $
\[|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )\]
\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + \overrightarrow b .\overrightarrow b .............(1)\]
Since, dot product of vectors are commutative which means\[\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a \]. We will use it in equation (1),
\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + 2\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow b .\]
Now, we have a dot product of two vectors as a multiplication of their magnitudes and cosine of angle between the vectors. We get,
\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2\overrightarrow a .\overrightarrow b + |\overrightarrow b {|^2}\]……….here, the property used is \[\overrightarrow a .\overrightarrow a = |\overrightarrow a {|^2}\]
\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow b {|^2}\]
Where, \[\theta\] is the angle between the vectors $\overrightarrow a $and$\overrightarrow b $.
Now, we know that
\[\operatorname{Cos} \theta \leqslant 1\]
Multiplying \[2|\overrightarrow a ||\overrightarrow b |\] both sides we get,
\[2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta \leqslant 2|\overrightarrow a ||\overrightarrow b |\]
Adding $|\overrightarrow a {|^2} + |\overrightarrow b {|^2}$on both the sides we get,
\[2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow a {|^2} + |\overrightarrow b {|^2} \leqslant 2|\overrightarrow a ||\overrightarrow b | + |\overrightarrow a {|^2} + |\overrightarrow b {|^2}\]
Forming the perfect squares we have,
\[|\overrightarrow a + \overrightarrow b {|^2} \leqslant {(|\overrightarrow a | + |\overrightarrow b |)^2}\]
Taking square root both the sides we get,
\[|\overrightarrow a + \overrightarrow b | \leqslant (|\overrightarrow a | + |\overrightarrow b |)\]
Hence proved.
Note:The dot products in vector are commutative but this property shouldn’t be applied when we take cross products. Since, the cross product of vectors are not commutative.
Complete step-by-step answer:
We are given that $\overrightarrow a $and $\overrightarrow b $are two vectors of triangle and also we need to prove that $|\overrightarrow a + \overrightarrow b | \leqslant |\overrightarrow a | + |\overrightarrow b |$ is true for any value of these two vectors.
We will start of by understanding what this triangle inequality means.
Triangle inequality says that the sum of two sides of a triangle is always greater than the third side. Here the term $|\overrightarrow a + \overrightarrow b |$ is referred to as the third side and $|\overrightarrow a | + |\overrightarrow b |$are the sum of the rest of the two sides.
The question can be started by taking the term $|\overrightarrow a + \overrightarrow b |$ and squaring it. We get,
\[|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )\]……….. Here, the property used is $|\overrightarrow c {|^2} = \overrightarrow {c.} \overrightarrow c $
\[|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )\]
\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + \overrightarrow b .\overrightarrow b .............(1)\]
Since, dot product of vectors are commutative which means\[\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a \]. We will use it in equation (1),
\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + 2\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow b .\]
Now, we have a dot product of two vectors as a multiplication of their magnitudes and cosine of angle between the vectors. We get,
\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2\overrightarrow a .\overrightarrow b + |\overrightarrow b {|^2}\]……….here, the property used is \[\overrightarrow a .\overrightarrow a = |\overrightarrow a {|^2}\]
\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow b {|^2}\]
Where, \[\theta\] is the angle between the vectors $\overrightarrow a $and$\overrightarrow b $.
Now, we know that
\[\operatorname{Cos} \theta \leqslant 1\]
Multiplying \[2|\overrightarrow a ||\overrightarrow b |\] both sides we get,
\[2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta \leqslant 2|\overrightarrow a ||\overrightarrow b |\]
Adding $|\overrightarrow a {|^2} + |\overrightarrow b {|^2}$on both the sides we get,
\[2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow a {|^2} + |\overrightarrow b {|^2} \leqslant 2|\overrightarrow a ||\overrightarrow b | + |\overrightarrow a {|^2} + |\overrightarrow b {|^2}\]
Forming the perfect squares we have,
\[|\overrightarrow a + \overrightarrow b {|^2} \leqslant {(|\overrightarrow a | + |\overrightarrow b |)^2}\]
Taking square root both the sides we get,
\[|\overrightarrow a + \overrightarrow b | \leqslant (|\overrightarrow a | + |\overrightarrow b |)\]
Hence proved.
Note:The dot products in vector are commutative but this property shouldn’t be applied when we take cross products. Since, the cross product of vectors are not commutative.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE