Answer

Verified

411.9k+ views

**Hint:**The question can be started by taking the term $|\overrightarrow a + \overrightarrow b |$ and squaring it. Since, we know that the identity that the square of modulus of a vector is equal to the dot product of it with itself we can use this identity for solving the question.

**Complete step-by-step answer:**

We are given that $\overrightarrow a $and $\overrightarrow b $are two vectors of triangle and also we need to prove that $|\overrightarrow a + \overrightarrow b | \leqslant |\overrightarrow a | + |\overrightarrow b |$ is true for any value of these two vectors.

We will start of by understanding what this triangle inequality means.

Triangle inequality says that the sum of two sides of a triangle is always greater than the third side. Here the term $|\overrightarrow a + \overrightarrow b |$ is referred to as the third side and $|\overrightarrow a | + |\overrightarrow b |$are the sum of the rest of the two sides.

The question can be started by taking the term $|\overrightarrow a + \overrightarrow b |$ and squaring it. We get,

\[|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )\]……….. Here, the property used is $|\overrightarrow c {|^2} = \overrightarrow {c.} \overrightarrow c $

\[|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )\]

\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + \overrightarrow b .\overrightarrow b .............(1)\]

Since, dot product of vectors are commutative which means\[\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a \]. We will use it in equation (1),

\[|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + 2\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow b .\]

Now, we have a dot product of two vectors as a multiplication of their magnitudes and cosine of angle between the vectors. We get,

\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2\overrightarrow a .\overrightarrow b + |\overrightarrow b {|^2}\]……….here, the property used is \[\overrightarrow a .\overrightarrow a = |\overrightarrow a {|^2}\]

\[|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow b {|^2}\]

Where, \[\theta\] is the angle between the vectors $\overrightarrow a $and$\overrightarrow b $.

Now, we know that

\[\operatorname{Cos} \theta \leqslant 1\]

Multiplying \[2|\overrightarrow a ||\overrightarrow b |\] both sides we get,

\[2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta \leqslant 2|\overrightarrow a ||\overrightarrow b |\]

Adding $|\overrightarrow a {|^2} + |\overrightarrow b {|^2}$on both the sides we get,

\[2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow a {|^2} + |\overrightarrow b {|^2} \leqslant 2|\overrightarrow a ||\overrightarrow b | + |\overrightarrow a {|^2} + |\overrightarrow b {|^2}\]

Forming the perfect squares we have,

\[|\overrightarrow a + \overrightarrow b {|^2} \leqslant {(|\overrightarrow a | + |\overrightarrow b |)^2}\]

Taking square root both the sides we get,

\[|\overrightarrow a + \overrightarrow b | \leqslant (|\overrightarrow a | + |\overrightarrow b |)\]

Hence proved.

**Note:**The dot products in vector are commutative but this property shouldn’t be applied when we take cross products. Since, the cross product of vectors are not commutative.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail