
Prove that $\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$.
Answer
619.2k+ views
Hint – In this question we have to prove that the left hand side of the given expression is equal to the right hand side. Use the trigonometric identities and algebraic formula like\[\cot \theta = \dfrac{1}{{\tan \theta }}\],\[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\], $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$to simplify the L.H.S part and prove it equal to the R.H.S part.
Complete step by step solution:
Given equation is
$\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Consider L.H.S
$ \Rightarrow \dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}$
Now as we know \[\cot \theta = \dfrac{1}{{\tan \theta }}\] so, substitute this value in above equation we have,
\[\dfrac{{\tan \theta }}{{\left( {1 - \dfrac{1}{{\tan \theta }}} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
Now simplify the above equation we have,
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} - \dfrac{{\cot \theta }}{{\left( {\tan \theta - 1} \right)}} = \dfrac{{{{\tan }^2}\theta - \dfrac{1}{{\tan \theta }}}}{{\tan \theta - 1}} = \dfrac{{{{\tan }^3}\theta - 1}}{{\tan \theta \left( {\tan \theta - 1} \right)}}\]
Now as we know $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so, use this property in above equation we have,
\[ \Rightarrow \dfrac{{\left( {\tan \theta - 1} \right)\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta \left( {\tan \theta - 1} \right)}} = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\]
Now divide by $\tan \theta $ in above equation we have,
\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }} = 1 + \tan \theta + \cot \theta \]
= R.H.S
Now we have to again prove that
$1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Now consider L.H.S
\[ \Rightarrow 1 + \tan \theta + \cot \theta \]
\[ \Rightarrow 1 + \tan \theta + \cot \theta = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\] (From above equation)
Now as we know that \[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta + \tan \theta }}{{\tan \theta }} = \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1\]
Now we know that \[{\text{sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1 = \dfrac{{\cos \theta }}{{{{\cos }^2}\theta \times \sin \theta }} + 1 = \dfrac{1}{{\cos \theta \times \sin \theta }} + 1\]
Now we know $\dfrac{1}{{\sin \theta }} = \csc \theta $ so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{1}{{\cos \theta \times \sin \theta }} + 1 = \sec \theta \times \csc \theta + 1\]
= R.H.S
Hence proved
Note – Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities, some of them have been mentioned above while performing the solution. Start by simplifying any one side and application of these identities along with some algebraic identities will help you reach the right answer.
Complete step by step solution:
Given equation is
$\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Consider L.H.S
$ \Rightarrow \dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}$
Now as we know \[\cot \theta = \dfrac{1}{{\tan \theta }}\] so, substitute this value in above equation we have,
\[\dfrac{{\tan \theta }}{{\left( {1 - \dfrac{1}{{\tan \theta }}} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
Now simplify the above equation we have,
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} - \dfrac{{\cot \theta }}{{\left( {\tan \theta - 1} \right)}} = \dfrac{{{{\tan }^2}\theta - \dfrac{1}{{\tan \theta }}}}{{\tan \theta - 1}} = \dfrac{{{{\tan }^3}\theta - 1}}{{\tan \theta \left( {\tan \theta - 1} \right)}}\]
Now as we know $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so, use this property in above equation we have,
\[ \Rightarrow \dfrac{{\left( {\tan \theta - 1} \right)\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta \left( {\tan \theta - 1} \right)}} = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\]
Now divide by $\tan \theta $ in above equation we have,
\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }} = 1 + \tan \theta + \cot \theta \]
= R.H.S
Now we have to again prove that
$1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Now consider L.H.S
\[ \Rightarrow 1 + \tan \theta + \cot \theta \]
\[ \Rightarrow 1 + \tan \theta + \cot \theta = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\] (From above equation)
Now as we know that \[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta + \tan \theta }}{{\tan \theta }} = \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1\]
Now we know that \[{\text{sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1 = \dfrac{{\cos \theta }}{{{{\cos }^2}\theta \times \sin \theta }} + 1 = \dfrac{1}{{\cos \theta \times \sin \theta }} + 1\]
Now we know $\dfrac{1}{{\sin \theta }} = \csc \theta $ so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{1}{{\cos \theta \times \sin \theta }} + 1 = \sec \theta \times \csc \theta + 1\]
= R.H.S
Hence proved
Note – Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities, some of them have been mentioned above while performing the solution. Start by simplifying any one side and application of these identities along with some algebraic identities will help you reach the right answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

