Answer

Verified

455.4k+ views

Hint – In this question we have to prove that the left hand side of the given expression is equal to the right hand side. Use the trigonometric identities and algebraic formula like\[\cot \theta = \dfrac{1}{{\tan \theta }}\],\[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\], $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$to simplify the L.H.S part and prove it equal to the R.H.S part.

Complete step by step solution:

Given equation is

$\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$

Consider L.H.S

$ \Rightarrow \dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}$

Now as we know \[\cot \theta = \dfrac{1}{{\tan \theta }}\] so, substitute this value in above equation we have,

\[\dfrac{{\tan \theta }}{{\left( {1 - \dfrac{1}{{\tan \theta }}} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]

Now simplify the above equation we have,

\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]

\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} - \dfrac{{\cot \theta }}{{\left( {\tan \theta - 1} \right)}} = \dfrac{{{{\tan }^2}\theta - \dfrac{1}{{\tan \theta }}}}{{\tan \theta - 1}} = \dfrac{{{{\tan }^3}\theta - 1}}{{\tan \theta \left( {\tan \theta - 1} \right)}}\]

Now as we know $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so, use this property in above equation we have,

\[ \Rightarrow \dfrac{{\left( {\tan \theta - 1} \right)\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta \left( {\tan \theta - 1} \right)}} = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\]

Now divide by $\tan \theta $ in above equation we have,

\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }} = 1 + \tan \theta + \cot \theta \]

= R.H.S

Now we have to again prove that

$1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$

Now consider L.H.S

\[ \Rightarrow 1 + \tan \theta + \cot \theta \]

\[ \Rightarrow 1 + \tan \theta + \cot \theta = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\] (From above equation)

Now as we know that \[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\] so, substitute this value in above equation we have,

\[ \Rightarrow \dfrac{{{{\sec }^2}\theta + \tan \theta }}{{\tan \theta }} = \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1\]

Now we know that \[{\text{sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so, substitute this value in above equation we have,

\[ \Rightarrow \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1 = \dfrac{{\cos \theta }}{{{{\cos }^2}\theta \times \sin \theta }} + 1 = \dfrac{1}{{\cos \theta \times \sin \theta }} + 1\]

Now we know $\dfrac{1}{{\sin \theta }} = \csc \theta $ so, substitute this value in above equation we have,

\[ \Rightarrow \dfrac{1}{{\cos \theta \times \sin \theta }} + 1 = \sec \theta \times \csc \theta + 1\]

= R.H.S

Hence proved

Note – Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities, some of them have been mentioned above while performing the solution. Start by simplifying any one side and application of these identities along with some algebraic identities will help you reach the right answer.

Complete step by step solution:

Given equation is

$\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$

Consider L.H.S

$ \Rightarrow \dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}$

Now as we know \[\cot \theta = \dfrac{1}{{\tan \theta }}\] so, substitute this value in above equation we have,

\[\dfrac{{\tan \theta }}{{\left( {1 - \dfrac{1}{{\tan \theta }}} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]

Now simplify the above equation we have,

\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]

\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} - \dfrac{{\cot \theta }}{{\left( {\tan \theta - 1} \right)}} = \dfrac{{{{\tan }^2}\theta - \dfrac{1}{{\tan \theta }}}}{{\tan \theta - 1}} = \dfrac{{{{\tan }^3}\theta - 1}}{{\tan \theta \left( {\tan \theta - 1} \right)}}\]

Now as we know $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so, use this property in above equation we have,

\[ \Rightarrow \dfrac{{\left( {\tan \theta - 1} \right)\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta \left( {\tan \theta - 1} \right)}} = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\]

Now divide by $\tan \theta $ in above equation we have,

\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }} = 1 + \tan \theta + \cot \theta \]

= R.H.S

Now we have to again prove that

$1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$

Now consider L.H.S

\[ \Rightarrow 1 + \tan \theta + \cot \theta \]

\[ \Rightarrow 1 + \tan \theta + \cot \theta = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\] (From above equation)

Now as we know that \[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\] so, substitute this value in above equation we have,

\[ \Rightarrow \dfrac{{{{\sec }^2}\theta + \tan \theta }}{{\tan \theta }} = \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1\]

Now we know that \[{\text{sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so, substitute this value in above equation we have,

\[ \Rightarrow \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1 = \dfrac{{\cos \theta }}{{{{\cos }^2}\theta \times \sin \theta }} + 1 = \dfrac{1}{{\cos \theta \times \sin \theta }} + 1\]

Now we know $\dfrac{1}{{\sin \theta }} = \csc \theta $ so, substitute this value in above equation we have,

\[ \Rightarrow \dfrac{1}{{\cos \theta \times \sin \theta }} + 1 = \sec \theta \times \csc \theta + 1\]

= R.H.S

Hence proved

Note – Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities, some of them have been mentioned above while performing the solution. Start by simplifying any one side and application of these identities along with some algebraic identities will help you reach the right answer.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

In 1946 the Interim Government was formed under a Sardar class 11 sst CBSE

Change the following sentences into negative and interrogative class 10 english CBSE