
Prove that $\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$.
Answer
593.4k+ views
Hint – In this question we have to prove that the left hand side of the given expression is equal to the right hand side. Use the trigonometric identities and algebraic formula like\[\cot \theta = \dfrac{1}{{\tan \theta }}\],\[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\], $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$to simplify the L.H.S part and prove it equal to the R.H.S part.
Complete step by step solution:
Given equation is
$\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Consider L.H.S
$ \Rightarrow \dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}$
Now as we know \[\cot \theta = \dfrac{1}{{\tan \theta }}\] so, substitute this value in above equation we have,
\[\dfrac{{\tan \theta }}{{\left( {1 - \dfrac{1}{{\tan \theta }}} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
Now simplify the above equation we have,
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} - \dfrac{{\cot \theta }}{{\left( {\tan \theta - 1} \right)}} = \dfrac{{{{\tan }^2}\theta - \dfrac{1}{{\tan \theta }}}}{{\tan \theta - 1}} = \dfrac{{{{\tan }^3}\theta - 1}}{{\tan \theta \left( {\tan \theta - 1} \right)}}\]
Now as we know $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so, use this property in above equation we have,
\[ \Rightarrow \dfrac{{\left( {\tan \theta - 1} \right)\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta \left( {\tan \theta - 1} \right)}} = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\]
Now divide by $\tan \theta $ in above equation we have,
\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }} = 1 + \tan \theta + \cot \theta \]
= R.H.S
Now we have to again prove that
$1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Now consider L.H.S
\[ \Rightarrow 1 + \tan \theta + \cot \theta \]
\[ \Rightarrow 1 + \tan \theta + \cot \theta = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\] (From above equation)
Now as we know that \[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta + \tan \theta }}{{\tan \theta }} = \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1\]
Now we know that \[{\text{sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1 = \dfrac{{\cos \theta }}{{{{\cos }^2}\theta \times \sin \theta }} + 1 = \dfrac{1}{{\cos \theta \times \sin \theta }} + 1\]
Now we know $\dfrac{1}{{\sin \theta }} = \csc \theta $ so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{1}{{\cos \theta \times \sin \theta }} + 1 = \sec \theta \times \csc \theta + 1\]
= R.H.S
Hence proved
Note – Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities, some of them have been mentioned above while performing the solution. Start by simplifying any one side and application of these identities along with some algebraic identities will help you reach the right answer.
Complete step by step solution:
Given equation is
$\dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}} = 1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Consider L.H.S
$ \Rightarrow \dfrac{{\tan \theta }}{{\left( {1 - \cot \theta } \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}$
Now as we know \[\cot \theta = \dfrac{1}{{\tan \theta }}\] so, substitute this value in above equation we have,
\[\dfrac{{\tan \theta }}{{\left( {1 - \dfrac{1}{{\tan \theta }}} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
Now simplify the above equation we have,
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} + \dfrac{{\cot \theta }}{{\left( {1 - \tan \theta } \right)}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\theta }}{{\left( {\tan \theta - 1} \right)}} - \dfrac{{\cot \theta }}{{\left( {\tan \theta - 1} \right)}} = \dfrac{{{{\tan }^2}\theta - \dfrac{1}{{\tan \theta }}}}{{\tan \theta - 1}} = \dfrac{{{{\tan }^3}\theta - 1}}{{\tan \theta \left( {\tan \theta - 1} \right)}}\]
Now as we know $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ so, use this property in above equation we have,
\[ \Rightarrow \dfrac{{\left( {\tan \theta - 1} \right)\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta \left( {\tan \theta - 1} \right)}} = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\]
Now divide by $\tan \theta $ in above equation we have,
\[ \Rightarrow \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }} = 1 + \tan \theta + \cot \theta \]
= R.H.S
Now we have to again prove that
$1 + \tan \theta + \cot \theta = \sec \theta \times \csc \theta + 1$
Now consider L.H.S
\[ \Rightarrow 1 + \tan \theta + \cot \theta \]
\[ \Rightarrow 1 + \tan \theta + \cot \theta = \dfrac{{\left( {{{\tan }^2}\theta + 1 + \tan \theta } \right)}}{{\tan \theta }}\] (From above equation)
Now as we know that \[\left[ {{\text{ta}}{{\text{n}}^2}\theta + 1 = {{\sec }^2}\theta } \right]\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta + \tan \theta }}{{\tan \theta }} = \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1\]
Now we know that \[{\text{sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{{{{\sec }^2}\theta }}{{\tan \theta }} + 1 = \dfrac{{\cos \theta }}{{{{\cos }^2}\theta \times \sin \theta }} + 1 = \dfrac{1}{{\cos \theta \times \sin \theta }} + 1\]
Now we know $\dfrac{1}{{\sin \theta }} = \csc \theta $ so, substitute this value in above equation we have,
\[ \Rightarrow \dfrac{1}{{\cos \theta \times \sin \theta }} + 1 = \sec \theta \times \csc \theta + 1\]
= R.H.S
Hence proved
Note – Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities, some of them have been mentioned above while performing the solution. Start by simplifying any one side and application of these identities along with some algebraic identities will help you reach the right answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

