Prove that \[\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \tan A + \cot A\]?
Last updated date: 14th Mar 2023
•
Total views: 203.4k
•
Views today: 2.84k
Answer
203.4k+ views
Hint: Here in this question we have to prove the given inequality which is given in this question. This question involves the trigonometric function we should know about the trigonometry ratio. Hence by using the simple calculations we are going to prove the given inequality.
Complete step-by-step answer:
In the trigonometry we have six trigonometry ratios namely sine , cosine, tangent, cosecant, secant and cotangent. These are abbreviated as sin, cos, tan, csc, sec and cot. The 3 trigonometry ratios are reciprocal of the other trigonometry ratios. Here cosine is the reciprocal of the sine. The secant is the reciprocal of the cosine. The cotangent is the reciprocal of the tangent.
Now consider the given inequality \[\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \tan A + \cot A\]
Now we consider the LHS
\[ = \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}\]
The 3 trigonometry ratios are reciprocal of the other trigonometry ratios. Here cosecant is the reciprocal of the sine. The secant is the reciprocal of the cosine. The cotangent is the reciprocal of the tangent. From the reciprocal of the trigonometry ratios. Now the inequality is written as
\[ = \dfrac{{\tan A}}{{1 - \dfrac{1}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}}\]
No we take the LCM for the both terms and this is written as
\[ = \dfrac{{\tan A}}{{\dfrac{{\tan A - 1}}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}}\]
On simplifying we have
\[ = \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} + \dfrac{1}{{\tan A(1 - \tan A)}}\]
Take a minus as a common and the second term is rewritten as
\[ = \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} - \dfrac{1}{{\tan A(\tan A - 1)}}\]
Now again taking the LCM for the both the terms we have
\[ = \dfrac{{{{\tan }^3}A - 1}}{{\tan A(\tan A - 1)}}\]
The above inequality, in the numerator it is in the form of \[{a^3} - {b^3}\], we have standard algebraic identity for this and it is given as \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\] Using this identity the above inequality is written as
\[ = \dfrac{{(\tan A - 1)({{\tan }^2}A + 1 + \tan A)}}{{\tan A(\tan A - 1)}}\]
On cancelling the terms we have
\[ = \dfrac{{({{\tan }^2}A + 1 + \tan A)}}{{\tan A}}\]
Now take the denominator value to the each every term of the numerator so we have
\[ = \dfrac{{{{\tan }^2}A}}{{\tan A}} + \dfrac{1}{{\tan A}} + \dfrac{{\tan A}}{{\tan A}}\]
On simplifying we have
\[ = 1 + \tan A + \cot A\]
\[ = RHS\]
Here we have proved LHS = RHS.
Note: The question involves the trigonometric functions. When we simplify the trigonometric functions and which will be equal to the RHS then the function is proved. While simplifying the trigonometric functions we must know about the trigonometric ratios and the trigonometric identities.
Complete step-by-step answer:
In the trigonometry we have six trigonometry ratios namely sine , cosine, tangent, cosecant, secant and cotangent. These are abbreviated as sin, cos, tan, csc, sec and cot. The 3 trigonometry ratios are reciprocal of the other trigonometry ratios. Here cosine is the reciprocal of the sine. The secant is the reciprocal of the cosine. The cotangent is the reciprocal of the tangent.
Now consider the given inequality \[\dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \tan A + \cot A\]
Now we consider the LHS
\[ = \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}}\]
The 3 trigonometry ratios are reciprocal of the other trigonometry ratios. Here cosecant is the reciprocal of the sine. The secant is the reciprocal of the cosine. The cotangent is the reciprocal of the tangent. From the reciprocal of the trigonometry ratios. Now the inequality is written as
\[ = \dfrac{{\tan A}}{{1 - \dfrac{1}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}}\]
No we take the LCM for the both terms and this is written as
\[ = \dfrac{{\tan A}}{{\dfrac{{\tan A - 1}}{{\tan A}}}} + \dfrac{{\dfrac{1}{{\tan A}}}}{{1 - \tan A}}\]
On simplifying we have
\[ = \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} + \dfrac{1}{{\tan A(1 - \tan A)}}\]
Take a minus as a common and the second term is rewritten as
\[ = \dfrac{{{{\tan }^2}A}}{{\tan A - 1}} - \dfrac{1}{{\tan A(\tan A - 1)}}\]
Now again taking the LCM for the both the terms we have
\[ = \dfrac{{{{\tan }^3}A - 1}}{{\tan A(\tan A - 1)}}\]
The above inequality, in the numerator it is in the form of \[{a^3} - {b^3}\], we have standard algebraic identity for this and it is given as \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\] Using this identity the above inequality is written as
\[ = \dfrac{{(\tan A - 1)({{\tan }^2}A + 1 + \tan A)}}{{\tan A(\tan A - 1)}}\]
On cancelling the terms we have
\[ = \dfrac{{({{\tan }^2}A + 1 + \tan A)}}{{\tan A}}\]
Now take the denominator value to the each every term of the numerator so we have
\[ = \dfrac{{{{\tan }^2}A}}{{\tan A}} + \dfrac{1}{{\tan A}} + \dfrac{{\tan A}}{{\tan A}}\]
On simplifying we have
\[ = 1 + \tan A + \cot A\]
\[ = RHS\]
Here we have proved LHS = RHS.
Note: The question involves the trigonometric functions. When we simplify the trigonometric functions and which will be equal to the RHS then the function is proved. While simplifying the trigonometric functions we must know about the trigonometric ratios and the trigonometric identities.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
