
Prove that \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}\] using the identity \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \].
Answer
515.1k+ views
Hint: We use the value of trigonometric functions like tangent and secant in terms of sine and cosine to prove the LHS of the equation equal to RHS of the equation. Divide both numerator and denominator by \[\cos \theta \] to convert the equation in form of tangent and secant. Multiply the fraction with a fraction that has a numerator and denominator as the same, so we can make use of the given identity.
* Value of \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
* Value of \[\sec \theta = \dfrac{1}{{\cos \theta }}\]
Complete step-by-step answer:
We have to prove \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}\]
We solve the left hand side of the equation
LHS of the equation is \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}}\]
Divide both numerator and denominator by\[\cos \theta \].
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}}}{{\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}}}\]
Separate the division in fraction
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} - \dfrac{1}{{\cos \theta }}}}\]
Since we know the value of\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]and value of \[\sec \theta = \dfrac{1}{{\cos \theta }}\]
Substitute the values in numerator and denominator.
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }}\]
Now multiply both numerator and denominator by same factor i.e. \[(\tan \theta - \sec \theta )\]
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }} \times \dfrac{{(\tan \theta - \sec \theta )}}{{(\tan \theta - \sec \theta )}}\]
Multiply the values in numerator only\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta \tan \theta - \sec \theta \tan \theta + \sec \theta - {{\sec }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Cancel the terms having same magnitude but opposite signs
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta - {{\sec }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Substitute the value of \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \]
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta - 1 - {{\tan }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Cancel the terms having same magnitude but opposite signs
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1 - \tan \theta + \sec \theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Take negative sign common from numerator
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - (\tan \theta + 1 - \sec \theta )}}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Cancel the same factors from numerator and denominator.
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1}}{{(\tan \theta - \sec \theta )}}\]
Multiply both numerator and denominator by -1
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1}}{{(\tan \theta - \sec \theta )}} \times \dfrac{{ - 1}}{{ - 1}}\]
Since we know the multiplication of two negative signs gives a positive sign
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{( - \tan \theta + \sec \theta )}}\]
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}\]
RHS of the equation is \[\dfrac{1}{{\sec \theta - \tan \theta }}\]
\[\therefore \]LHS \[ = \]RHS
Hence proved
Note: Students might make the mistake of proving this question by rationalizing the process. Keep in mind we rationalize the fraction where we have to find the smallest possible value of the function, if we rationalize the LHS we will have to rationalize the RHS as well. Here we take the hint of which value to be multiplied in numerator and denominator by looking at the RHS.
\[\cos ec \theta = \dfrac{1}{{\sin \theta }}\]
\[\tan \theta = \dfrac{1}{{\cot \theta }}\]
* Value of \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
* Value of \[\sec \theta = \dfrac{1}{{\cos \theta }}\]
Complete step-by-step answer:
We have to prove \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}\]
We solve the left hand side of the equation
LHS of the equation is \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}}\]
Divide both numerator and denominator by\[\cos \theta \].
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}}}{{\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}}}\]
Separate the division in fraction
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} - \dfrac{1}{{\cos \theta }}}}\]
Since we know the value of\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]and value of \[\sec \theta = \dfrac{1}{{\cos \theta }}\]
Substitute the values in numerator and denominator.
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }}\]
Now multiply both numerator and denominator by same factor i.e. \[(\tan \theta - \sec \theta )\]
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }} \times \dfrac{{(\tan \theta - \sec \theta )}}{{(\tan \theta - \sec \theta )}}\]
Multiply the values in numerator only\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta \tan \theta - \sec \theta \tan \theta + \sec \theta - {{\sec }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Cancel the terms having same magnitude but opposite signs
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta - {{\sec }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Substitute the value of \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \]
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta - 1 - {{\tan }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Cancel the terms having same magnitude but opposite signs
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1 - \tan \theta + \sec \theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Take negative sign common from numerator
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - (\tan \theta + 1 - \sec \theta )}}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}\]
Cancel the same factors from numerator and denominator.
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1}}{{(\tan \theta - \sec \theta )}}\]
Multiply both numerator and denominator by -1
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1}}{{(\tan \theta - \sec \theta )}} \times \dfrac{{ - 1}}{{ - 1}}\]
Since we know the multiplication of two negative signs gives a positive sign
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{( - \tan \theta + \sec \theta )}}\]
\[ \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}\]
RHS of the equation is \[\dfrac{1}{{\sec \theta - \tan \theta }}\]
\[\therefore \]LHS \[ = \]RHS
Hence proved
Note: Students might make the mistake of proving this question by rationalizing the process. Keep in mind we rationalize the fraction where we have to find the smallest possible value of the function, if we rationalize the LHS we will have to rationalize the RHS as well. Here we take the hint of which value to be multiplied in numerator and denominator by looking at the RHS.
\[\cos ec \theta = \dfrac{1}{{\sin \theta }}\]
\[\tan \theta = \dfrac{1}{{\cot \theta }}\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
