
Prove that \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}\]
Answer
608.4k+ views
Hint: Here R. H. S indicates a term which includes $\sec \theta $ so, we divide the numerator and denominator of L. H. S by $\cos \theta $.
Dividing numerator and denominator by $\cos \theta $ makes the L. H. S term easy. As $\sec \theta $ is reciprocal of $\cos \theta $ so we are dividing L .H .S by $\cos \theta $.
$ \Rightarrow $L. H. S = \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} \div \dfrac{{\cos \theta }}{{\cos \theta }}\]
$ \Rightarrow $L. H. S =$\dfrac{{\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}}}{{\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}}}$ ……. (1)
Now, by using trigonometric identities we will simplify the L. H. S term.
We know that
$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $, $\dfrac{{\cos \theta }}{{\cos \theta }} = 1$, $\dfrac{1}{{\cos \theta }} = \sec \theta $
Now, putting these values in equation (1), we get
$ \Rightarrow $L. H. S = $\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }}$ ……. (2)
Now, using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$, equation (2) becomes simple. We replace the value of 1 only in the denominator to get the desired result.
Replacing value of 1 in denominator, we get
$ \Rightarrow $L. H. S =$\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta - \sec \theta + ({{\sec }^2}\theta - {{\tan }^2}\theta )}}$
We know that $({a^2} - {b^2}) = (a - b)(a + b)$, using this property L. H. S can be written as,
$ \Rightarrow $L. H. S =$\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta - \sec \theta + (\sec \theta - \tan \theta )(\sec \theta + \tan \theta )}}$
Taking $(\sec \theta - \tan \theta )$ common from denominator,
$ \Rightarrow $L. H. S =$\dfrac{{\tan \theta - 1 + \sec \theta }}{{(\sec \theta - \tan \theta )( - 1 + \sec \theta + \tan \theta )}}$
Now, eliminating the same terms from the numerator and the denominator, we get
$ \Rightarrow $L. H. S =$\dfrac{1}{{\sec \theta - \tan \theta }}$= R. H. S
Hence proved.
Note: To solve such problems one should have the knowledge of trigonometric identities like ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , $se{c^2}\theta - {\tan ^2}\theta = 1$ and $\cos e{c^2}\theta - {\cot ^2}\theta = 1$ which are very useful in solving the problems. Another key point is that we have to see the R. H. S of the question to decide which identity we can use to solve the problem.
Dividing numerator and denominator by $\cos \theta $ makes the L. H. S term easy. As $\sec \theta $ is reciprocal of $\cos \theta $ so we are dividing L .H .S by $\cos \theta $.
$ \Rightarrow $L. H. S = \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} \div \dfrac{{\cos \theta }}{{\cos \theta }}\]
$ \Rightarrow $L. H. S =$\dfrac{{\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}}}{{\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}}}$ ……. (1)
Now, by using trigonometric identities we will simplify the L. H. S term.
We know that
$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $, $\dfrac{{\cos \theta }}{{\cos \theta }} = 1$, $\dfrac{1}{{\cos \theta }} = \sec \theta $
Now, putting these values in equation (1), we get
$ \Rightarrow $L. H. S = $\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }}$ ……. (2)
Now, using the identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$, equation (2) becomes simple. We replace the value of 1 only in the denominator to get the desired result.
Replacing value of 1 in denominator, we get
$ \Rightarrow $L. H. S =$\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta - \sec \theta + ({{\sec }^2}\theta - {{\tan }^2}\theta )}}$
We know that $({a^2} - {b^2}) = (a - b)(a + b)$, using this property L. H. S can be written as,
$ \Rightarrow $L. H. S =$\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta - \sec \theta + (\sec \theta - \tan \theta )(\sec \theta + \tan \theta )}}$
Taking $(\sec \theta - \tan \theta )$ common from denominator,
$ \Rightarrow $L. H. S =$\dfrac{{\tan \theta - 1 + \sec \theta }}{{(\sec \theta - \tan \theta )( - 1 + \sec \theta + \tan \theta )}}$
Now, eliminating the same terms from the numerator and the denominator, we get
$ \Rightarrow $L. H. S =$\dfrac{1}{{\sec \theta - \tan \theta }}$= R. H. S
Hence proved.
Note: To solve such problems one should have the knowledge of trigonometric identities like ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , $se{c^2}\theta - {\tan ^2}\theta = 1$ and $\cos e{c^2}\theta - {\cot ^2}\theta = 1$ which are very useful in solving the problems. Another key point is that we have to see the R. H. S of the question to decide which identity we can use to solve the problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

