Answer
Verified
493.5k+ views
Hint: Take LHS individually and by using Trigonometric Identities Trigonometric ratios simplify it. Similarly, take RHS and simplify it.
“Complete step-by-step answer:”
Given the \[LHS=\dfrac{{{\cot }^{2}}A\left( \sec A-1 \right)}{1+\sin A}\]
We know that \[\cot A=\dfrac{\cos A}{\sin A}\]and \[\sec A=\dfrac{1}{\cos A}\]
\[\therefore LHS=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1}{\cos A}-1 \right]}{1+\sin A}=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1-\cos A}{\cos A} \right]}{1+\sin A}\]
Cancel out \[\cos A\]from numerator and denominator.
\[LHS=\dfrac{\dfrac{\cos A}{{{\sin }^{2}}A}\left( 1-\cos A \right)}{1+\sin A}\]
We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
\[\begin{align}
& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A \\
& 1-{{\cos }^{2}}A=\left( 1-\cos A \right)\left( 1+\cos A \right) \\
& \therefore LHS=\dfrac{\dfrac{\cos A}{\left( 1-{{\cos }^{2}}A \right)}\left( 1-\cos A \right)}{1+\sin A} \\
& =\dfrac{\cos A\left( 1-\cos A \right)}{\left( 1-\cos A \right)\left( 1+\cos A \right)\left( 1+\sin A \right)} \\
\end{align}\]
Cancel out \[\left( 1-\cos A \right)\]from numerator and denominator.
\[=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-\left( 1 \right)\]
Now take \[RHS={{\sec }^{2}}A\left( \dfrac{1-\sin A}{1+\sec A} \right)\]
We know, \[\sec A=\dfrac{1}{\cos A}\]
\[\begin{align}
& \Rightarrow RHS=\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{1+\dfrac{1}{\cos A}} \right] \\
& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{\dfrac{\cos A+1}{\cos A}} \right] \\
& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\
\end{align}\]
We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
\[\begin{align}
& \Rightarrow {{\cos }^{2}}A=1-{{\sin }^{2}}A \\
& \left( 1-{{\sin }^{2}}A \right)=\left( 1-\sin A \right)\left( 1+\sin A \right) \\
& \therefore RHS=\dfrac{1}{\left( 1-\sin A \right)\left( 1+\sin A \right)}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\
\end{align}\]
Cancel out \[\left( 1-\sin A \right)\] from numerator and denominator.
\[RHS=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-(2)\]
Now (1) = (2)
Which shows that LHS = RHS.
Note: By solving LHS and RHS, we simplify both to \[\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}\]which shows that LHS = RHS.
“Complete step-by-step answer:”
Given the \[LHS=\dfrac{{{\cot }^{2}}A\left( \sec A-1 \right)}{1+\sin A}\]
We know that \[\cot A=\dfrac{\cos A}{\sin A}\]and \[\sec A=\dfrac{1}{\cos A}\]
\[\therefore LHS=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1}{\cos A}-1 \right]}{1+\sin A}=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1-\cos A}{\cos A} \right]}{1+\sin A}\]
Cancel out \[\cos A\]from numerator and denominator.
\[LHS=\dfrac{\dfrac{\cos A}{{{\sin }^{2}}A}\left( 1-\cos A \right)}{1+\sin A}\]
We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
\[\begin{align}
& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A \\
& 1-{{\cos }^{2}}A=\left( 1-\cos A \right)\left( 1+\cos A \right) \\
& \therefore LHS=\dfrac{\dfrac{\cos A}{\left( 1-{{\cos }^{2}}A \right)}\left( 1-\cos A \right)}{1+\sin A} \\
& =\dfrac{\cos A\left( 1-\cos A \right)}{\left( 1-\cos A \right)\left( 1+\cos A \right)\left( 1+\sin A \right)} \\
\end{align}\]
Cancel out \[\left( 1-\cos A \right)\]from numerator and denominator.
\[=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-\left( 1 \right)\]
Now take \[RHS={{\sec }^{2}}A\left( \dfrac{1-\sin A}{1+\sec A} \right)\]
We know, \[\sec A=\dfrac{1}{\cos A}\]
\[\begin{align}
& \Rightarrow RHS=\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{1+\dfrac{1}{\cos A}} \right] \\
& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{\dfrac{\cos A+1}{\cos A}} \right] \\
& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\
\end{align}\]
We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]
\[\begin{align}
& \Rightarrow {{\cos }^{2}}A=1-{{\sin }^{2}}A \\
& \left( 1-{{\sin }^{2}}A \right)=\left( 1-\sin A \right)\left( 1+\sin A \right) \\
& \therefore RHS=\dfrac{1}{\left( 1-\sin A \right)\left( 1+\sin A \right)}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\
\end{align}\]
Cancel out \[\left( 1-\sin A \right)\] from numerator and denominator.
\[RHS=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-(2)\]
Now (1) = (2)
Which shows that LHS = RHS.
Note: By solving LHS and RHS, we simplify both to \[\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}\]which shows that LHS = RHS.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE