# Prove that \[\dfrac{{{\cot }^{2}}A\left( \sec A-1 \right)}{1+\sin A}={{\sec }^{2}}A\left( \dfrac{1-\sin A}{1+\sec A} \right)\].

Answer

Verified

363k+ views

Hint: Take LHS individually and by using Trigonometric Identities Trigonometric ratios simplify it. Similarly, take RHS and simplify it.

“Complete step-by-step answer:”

Given the \[LHS=\dfrac{{{\cot }^{2}}A\left( \sec A-1 \right)}{1+\sin A}\]

We know that \[\cot A=\dfrac{\cos A}{\sin A}\]and \[\sec A=\dfrac{1}{\cos A}\]

\[\therefore LHS=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1}{\cos A}-1 \right]}{1+\sin A}=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1-\cos A}{\cos A} \right]}{1+\sin A}\]

Cancel out \[\cos A\]from numerator and denominator.

\[LHS=\dfrac{\dfrac{\cos A}{{{\sin }^{2}}A}\left( 1-\cos A \right)}{1+\sin A}\]

We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]

\[\begin{align}

& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A \\

& 1-{{\cos }^{2}}A=\left( 1-\cos A \right)\left( 1+\cos A \right) \\

& \therefore LHS=\dfrac{\dfrac{\cos A}{\left( 1-{{\cos }^{2}}A \right)}\left( 1-\cos A \right)}{1+\sin A} \\

& =\dfrac{\cos A\left( 1-\cos A \right)}{\left( 1-\cos A \right)\left( 1+\cos A \right)\left( 1+\sin A \right)} \\

\end{align}\]

Cancel out \[\left( 1-\cos A \right)\]from numerator and denominator.

\[=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-\left( 1 \right)\]

Now take \[RHS={{\sec }^{2}}A\left( \dfrac{1-\sin A}{1+\sec A} \right)\]

We know, \[\sec A=\dfrac{1}{\cos A}\]

\[\begin{align}

& \Rightarrow RHS=\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{1+\dfrac{1}{\cos A}} \right] \\

& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{\dfrac{\cos A+1}{\cos A}} \right] \\

& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\

\end{align}\]

We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]

\[\begin{align}

& \Rightarrow {{\cos }^{2}}A=1-{{\sin }^{2}}A \\

& \left( 1-{{\sin }^{2}}A \right)=\left( 1-\sin A \right)\left( 1+\sin A \right) \\

& \therefore RHS=\dfrac{1}{\left( 1-\sin A \right)\left( 1+\sin A \right)}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\

\end{align}\]

Cancel out \[\left( 1-\sin A \right)\] from numerator and denominator.

\[RHS=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-(2)\]

Now (1) = (2)

Which shows that LHS = RHS.

Note: By solving LHS and RHS, we simplify both to \[\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}\]which shows that LHS = RHS.

“Complete step-by-step answer:”

Given the \[LHS=\dfrac{{{\cot }^{2}}A\left( \sec A-1 \right)}{1+\sin A}\]

We know that \[\cot A=\dfrac{\cos A}{\sin A}\]and \[\sec A=\dfrac{1}{\cos A}\]

\[\therefore LHS=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1}{\cos A}-1 \right]}{1+\sin A}=\dfrac{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}\left[ \dfrac{1-\cos A}{\cos A} \right]}{1+\sin A}\]

Cancel out \[\cos A\]from numerator and denominator.

\[LHS=\dfrac{\dfrac{\cos A}{{{\sin }^{2}}A}\left( 1-\cos A \right)}{1+\sin A}\]

We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]

\[\begin{align}

& \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A \\

& 1-{{\cos }^{2}}A=\left( 1-\cos A \right)\left( 1+\cos A \right) \\

& \therefore LHS=\dfrac{\dfrac{\cos A}{\left( 1-{{\cos }^{2}}A \right)}\left( 1-\cos A \right)}{1+\sin A} \\

& =\dfrac{\cos A\left( 1-\cos A \right)}{\left( 1-\cos A \right)\left( 1+\cos A \right)\left( 1+\sin A \right)} \\

\end{align}\]

Cancel out \[\left( 1-\cos A \right)\]from numerator and denominator.

\[=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-\left( 1 \right)\]

Now take \[RHS={{\sec }^{2}}A\left( \dfrac{1-\sin A}{1+\sec A} \right)\]

We know, \[\sec A=\dfrac{1}{\cos A}\]

\[\begin{align}

& \Rightarrow RHS=\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{1+\dfrac{1}{\cos A}} \right] \\

& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{1-\sin A}{\dfrac{\cos A+1}{\cos A}} \right] \\

& =\dfrac{1}{{{\cos }^{2}}A}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\

\end{align}\]

We know, \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\]

\[\begin{align}

& \Rightarrow {{\cos }^{2}}A=1-{{\sin }^{2}}A \\

& \left( 1-{{\sin }^{2}}A \right)=\left( 1-\sin A \right)\left( 1+\sin A \right) \\

& \therefore RHS=\dfrac{1}{\left( 1-\sin A \right)\left( 1+\sin A \right)}\left[ \dfrac{\cos A\left( 1-\sin A \right)}{1+\cos A} \right] \\

\end{align}\]

Cancel out \[\left( 1-\sin A \right)\] from numerator and denominator.

\[RHS=\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}-(2)\]

Now (1) = (2)

Which shows that LHS = RHS.

Note: By solving LHS and RHS, we simplify both to \[\dfrac{\cos A}{\left( 1+\cos A \right)\left( 1+\sin A \right)}\]which shows that LHS = RHS.

Last updated date: 01st Oct 2023

•

Total views: 363k

•

Views today: 7.63k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE