
Prove that \[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}} = \ cosec\theta + \cot \theta \]
Answer
483.9k+ views
Hint: We solve this question by grouping together the term \[(1 - \sin \theta )\] from both numerator and denominator and then rationalizing the term by multiplying both numerator and denominator by the same value. Using the trigonometric identities like \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] we solve the LHS.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
