Answer

Verified

411.6k+ views

**Hint:**We solve this question by grouping together the term \[(1 - \sin \theta )\] from both numerator and denominator and then rationalizing the term by multiplying both numerator and denominator by the same value. Using the trigonometric identities like \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] we solve the LHS.

**Complete step-by-step answer:**

Consider the Left hand side of the equation

\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]

Group together the term \[(1 - \sin \theta )\] from both numerator and denominator

\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]

Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].

\[

\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\

\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\

\]

Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]

\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]

Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.

\[

\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\

\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\

\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\

\]

Now we pair up the terms that can be transformed using trigonometric identities.

\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]

We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]

We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.

\[

\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\

\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\

\]

Now we take 2 common from both denominator and numerator.

\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]

Cancel the same terms from both numerator and denominator.

\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]

Now we take the terms common in the denominator and numerator.

\[

\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\

\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\

\]

Cancel out the same terms from both numerator and denominator.

\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]

Now break the fraction into two parts

\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]

Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation

\[ \Rightarrow \cos ec\theta + \cot \theta \]

which is equal to RHS of the equation.

Hence Proved

**Note:**Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.

Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.

Recently Updated Pages

What are the Advantages and Disadvantages of Algorithm

How do you write 0125 in scientific notation class 0 maths CBSE

The marks obtained by 50 students of class 10 out of class 11 maths CBSE

Out of 30 students in a class 6 like football 12 like class 7 maths CBSE

Explain the law of constant proportion in a simple way

How do you simplify left 5 3i right2 class 12 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Mention the different categories of ministers in the class 10 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Who is the executive head of the Municipal Corporation class 6 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which monarch called himself as the second Alexander class 10 social science CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE