
Prove that \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\].
Answer
483.9k+ views
Hint: For proving \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\], we divide the LHS part of the equation by $\sin A$ and convert this into $\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}$ and now we substitute identity in place of 1 i.e. $\cos e{c^2}A - {\cot ^2}A = 1$ in numerator after this we apply an identity in the numerator i.e. ${a^2} - {b^2} = (a + b)(a - b)$ after applying this identity we get terms as $\dfrac{{(\cos ecA + \cot A)(1 - \cos ecA + \cot A)}}{{\cot A + 1 - \cos ecA}}$ and we cancel out the like terms and we got our answer which is equal to the RHS.
Complete step-by-step answer:
By taking LHS \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\] and we divide each term of numerator and denominator by $\sin A$.
We get,
\[\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}\]
After solving we get the equation as,
$\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, in numerator in place of 1 we insert an identity which is,
$\cos e{c^2}A - {\cot ^2}A = 1$
We get the result as,
$\dfrac{{\cot A - (\cos e{c^2}A - {{\cot }^2}A) + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, we put an algebraic identity which is
${a^2} - {b^2} = (a + b)(a - b)$ where, $a = \cos ecA,b = \cot A$
We get,
\[\dfrac{{\cos ecA + \cot A - [(\cos ecA + \cot A)(\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
Now by taking $(\cos ecA + \cot A)$ we get the equation as,
\[\dfrac{{(\cos ecA + \cot A)[1 - (\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
By solving bracket we get
\[\]\[\dfrac{{(\cos ecA + \cot A)[\cot A + 1 - \cos ecA]}}{{\cot A + 1 - \cos ecA}}\]
By eliminating the like terms i.e. \[\cot A + 1 - \cos ecA\]
We get,
\[\cos ecA + \cot A\]
=RHS
Hence Proved
Note: Alternate Method to solve the above question
By taking LHS
\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
And by dividing both numerator and denominator by \[\cos A + \sin A - 1\]
We get,
=\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}} \times \dfrac{{\cos A + (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
By applying identities (i) ${a^2} - {b^2} = (a + b)(a - b)$ in numerator, (ii) ${(a + b)^2} = {a^2} + {b^2} + 2ab$ in denominator
We get,
=\[\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{[\cos A + (\sin A - 1)]}^2}}}\]
=$\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{\cos }^2}A + {{(\sin A - 1)}^2} + 2\cos A \times (\sin A - 1)}}$
Now we apply identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$ on $\sin A - 1$ in both numerator and denominator
We get,
=$\dfrac{{{{\cos }^2}A - ({{\sin }^2}A + 1 - 2\sin A)}}{{{{\cos }^2}A + {{\sin }^2}A + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}$
As, \[{\cos ^2}A + {\sin ^2}A = 1\]
=\[\dfrac{{{{\cos }^2}A - {{\sin }^2}A - 1 + 2\sin A}}{{1 + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - (1 - {{\cos }^2}A) - 1 + 2\sin A}}{{2 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - 1 + {{\cos }^2}A - 1 + 2\sin A}}{{2(1 - \sin A) + 2\cos A(\sin A - 1)}}\]
=\[\dfrac{{2{{\cos }^2}A - 2 + 2\sin A}}{{2(1 - \sin A) - 2\cos A(1 - \sin A)}}\]
Taking (-2) common from numerator and \[2(1 - \sin A)\] common from denominator
We get
=\[\dfrac{{ - 2(1 - {{\cos }^2}A - \sin A)}}{{2(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{ - ({{\sin }^2}A - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
Taking $\sin A$ common in numerator we get,
=\[\dfrac{{ - \sin A(\sin A - 1)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A(1 - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}}\]
Now multiply and divide numerator and denominator by \[(1 + \cos A)\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}} \times \dfrac{{(1 + \cos A)}}{{(1 + \cos A)}}\]
We get
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{1 - {{\cos }^2}A}}\]
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{{{\sin }^2}A}}\]
We get
=\[\dfrac{{1 + \cos A}}{{\sin A}}\]
i.e. \[\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
=$\cos ecA + \cot A$
=RHS
Complete step-by-step answer:
By taking LHS \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\] and we divide each term of numerator and denominator by $\sin A$.
We get,
\[\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}\]
After solving we get the equation as,
$\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, in numerator in place of 1 we insert an identity which is,
$\cos e{c^2}A - {\cot ^2}A = 1$
We get the result as,
$\dfrac{{\cot A - (\cos e{c^2}A - {{\cot }^2}A) + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, we put an algebraic identity which is
${a^2} - {b^2} = (a + b)(a - b)$ where, $a = \cos ecA,b = \cot A$
We get,
\[\dfrac{{\cos ecA + \cot A - [(\cos ecA + \cot A)(\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
Now by taking $(\cos ecA + \cot A)$ we get the equation as,
\[\dfrac{{(\cos ecA + \cot A)[1 - (\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
By solving bracket we get
\[\]\[\dfrac{{(\cos ecA + \cot A)[\cot A + 1 - \cos ecA]}}{{\cot A + 1 - \cos ecA}}\]
By eliminating the like terms i.e. \[\cot A + 1 - \cos ecA\]
We get,
\[\cos ecA + \cot A\]
=RHS
Hence Proved
Note: Alternate Method to solve the above question
By taking LHS
\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
And by dividing both numerator and denominator by \[\cos A + \sin A - 1\]
We get,
=\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}} \times \dfrac{{\cos A + (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
By applying identities (i) ${a^2} - {b^2} = (a + b)(a - b)$ in numerator, (ii) ${(a + b)^2} = {a^2} + {b^2} + 2ab$ in denominator
We get,
=\[\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{[\cos A + (\sin A - 1)]}^2}}}\]
=$\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{\cos }^2}A + {{(\sin A - 1)}^2} + 2\cos A \times (\sin A - 1)}}$
Now we apply identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$ on $\sin A - 1$ in both numerator and denominator
We get,
=$\dfrac{{{{\cos }^2}A - ({{\sin }^2}A + 1 - 2\sin A)}}{{{{\cos }^2}A + {{\sin }^2}A + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}$
As, \[{\cos ^2}A + {\sin ^2}A = 1\]
=\[\dfrac{{{{\cos }^2}A - {{\sin }^2}A - 1 + 2\sin A}}{{1 + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - (1 - {{\cos }^2}A) - 1 + 2\sin A}}{{2 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - 1 + {{\cos }^2}A - 1 + 2\sin A}}{{2(1 - \sin A) + 2\cos A(\sin A - 1)}}\]
=\[\dfrac{{2{{\cos }^2}A - 2 + 2\sin A}}{{2(1 - \sin A) - 2\cos A(1 - \sin A)}}\]
Taking (-2) common from numerator and \[2(1 - \sin A)\] common from denominator
We get
=\[\dfrac{{ - 2(1 - {{\cos }^2}A - \sin A)}}{{2(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{ - ({{\sin }^2}A - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
Taking $\sin A$ common in numerator we get,
=\[\dfrac{{ - \sin A(\sin A - 1)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A(1 - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}}\]
Now multiply and divide numerator and denominator by \[(1 + \cos A)\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}} \times \dfrac{{(1 + \cos A)}}{{(1 + \cos A)}}\]
We get
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{1 - {{\cos }^2}A}}\]
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{{{\sin }^2}A}}\]
We get
=\[\dfrac{{1 + \cos A}}{{\sin A}}\]
i.e. \[\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
=$\cos ecA + \cot A$
=RHS
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
