
How do you prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]?
Answer
466.5k+ views
Hint: We directly use the formula of \[\tan 2x\] after we convert the cotangent function in left hand side of the equation to tangent function using the formula \[\cot x = \dfrac{1}{{\tan x}}\]. Substitute the value of \[\tan 2x\] in the denominator and multiply negative sign wherever required.
* \[\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Complete step-by-step solution:
We have to prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
We take left hand side of the equation and convert the cotangent function into tangent function
Left hand side of the equation is \[ - \cot 2x\]
We use the conversion of \[\cot x = \dfrac{1}{{\tan x}}\] to write the left hand side of the equation in terms of tangent
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1}}{{\tan 2x}}\]
Now we know the formula for \[\tan 2x = \dfrac{{1 - {{\tan }^2}x}}{{2\tan x}}\]
\[ \Rightarrow - \cot 2x = \dfrac{{ - (1 - {{\tan }^2}x)}}{{2\tan x}}\]
Multiply negative sign outside the bracket with terms inside the bracket
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1 - ( - {{\tan }^2}x)}}{{2\tan x}}\]
Use the concept that when a negative number is multiplied by a negative number, we get the result as a positive number.
\[ \Rightarrow - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Since the term on right hand side of the equation is same as right hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
Note: Alternate method:
We can convert the terms given on the right hand side of the equation in terms of sine and cosine using the formula \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. Later use the formula \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\] to convert the angle from x to 2x.
Right hand side of the equation is \[\dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Substitute the value of \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in both numerator and denominator of the equation on right hand side
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 1}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Take LCM of the terms in numerator of the equation
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Write the fraction in simpler form
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}} \times \dfrac{{\cos x}}{{2\sin x}}\]
Cancel same factors from numerator and denominator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{\cos x}} \times \dfrac{1}{{2\sin x}}\]
Now we can write the product of two fractions as one fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{2\sin x\cos x}}\]
Take -1 common from numerator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - ({{\cos }^2}x - {{\sin }^2}x)}}{{2\sin x\cos x}}\]
Now we know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\].
Substitute the value of \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in numerator of the fraction and \[2\sin x\cos = \sin 2x\] in the denominator of the fraction.
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - \cos 2x}}{{\sin 2x}}\]
We know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] then changing the angle from x to 2x we can write \[\cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = - \cot 2x\]
Since the term on right hand side of the equation is same as left hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
* \[\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Complete step-by-step solution:
We have to prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
We take left hand side of the equation and convert the cotangent function into tangent function
Left hand side of the equation is \[ - \cot 2x\]
We use the conversion of \[\cot x = \dfrac{1}{{\tan x}}\] to write the left hand side of the equation in terms of tangent
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1}}{{\tan 2x}}\]
Now we know the formula for \[\tan 2x = \dfrac{{1 - {{\tan }^2}x}}{{2\tan x}}\]
\[ \Rightarrow - \cot 2x = \dfrac{{ - (1 - {{\tan }^2}x)}}{{2\tan x}}\]
Multiply negative sign outside the bracket with terms inside the bracket
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1 - ( - {{\tan }^2}x)}}{{2\tan x}}\]
Use the concept that when a negative number is multiplied by a negative number, we get the result as a positive number.
\[ \Rightarrow - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Since the term on right hand side of the equation is same as right hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
Note: Alternate method:
We can convert the terms given on the right hand side of the equation in terms of sine and cosine using the formula \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. Later use the formula \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\] to convert the angle from x to 2x.
Right hand side of the equation is \[\dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Substitute the value of \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in both numerator and denominator of the equation on right hand side
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 1}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Take LCM of the terms in numerator of the equation
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Write the fraction in simpler form
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}} \times \dfrac{{\cos x}}{{2\sin x}}\]
Cancel same factors from numerator and denominator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{\cos x}} \times \dfrac{1}{{2\sin x}}\]
Now we can write the product of two fractions as one fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{2\sin x\cos x}}\]
Take -1 common from numerator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - ({{\cos }^2}x - {{\sin }^2}x)}}{{2\sin x\cos x}}\]
Now we know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\].
Substitute the value of \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in numerator of the fraction and \[2\sin x\cos = \sin 2x\] in the denominator of the fraction.
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - \cos 2x}}{{\sin 2x}}\]
We know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] then changing the angle from x to 2x we can write \[\cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = - \cot 2x\]
Since the term on right hand side of the equation is same as left hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
