
How do you prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]?
Answer
548.1k+ views
Hint: We directly use the formula of \[\tan 2x\] after we convert the cotangent function in left hand side of the equation to tangent function using the formula \[\cot x = \dfrac{1}{{\tan x}}\]. Substitute the value of \[\tan 2x\] in the denominator and multiply negative sign wherever required.
* \[\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Complete step-by-step solution:
We have to prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
We take left hand side of the equation and convert the cotangent function into tangent function
Left hand side of the equation is \[ - \cot 2x\]
We use the conversion of \[\cot x = \dfrac{1}{{\tan x}}\] to write the left hand side of the equation in terms of tangent
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1}}{{\tan 2x}}\]
Now we know the formula for \[\tan 2x = \dfrac{{1 - {{\tan }^2}x}}{{2\tan x}}\]
\[ \Rightarrow - \cot 2x = \dfrac{{ - (1 - {{\tan }^2}x)}}{{2\tan x}}\]
Multiply negative sign outside the bracket with terms inside the bracket
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1 - ( - {{\tan }^2}x)}}{{2\tan x}}\]
Use the concept that when a negative number is multiplied by a negative number, we get the result as a positive number.
\[ \Rightarrow - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Since the term on right hand side of the equation is same as right hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
Note: Alternate method:
We can convert the terms given on the right hand side of the equation in terms of sine and cosine using the formula \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. Later use the formula \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\] to convert the angle from x to 2x.
Right hand side of the equation is \[\dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Substitute the value of \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in both numerator and denominator of the equation on right hand side
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 1}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Take LCM of the terms in numerator of the equation
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Write the fraction in simpler form
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}} \times \dfrac{{\cos x}}{{2\sin x}}\]
Cancel same factors from numerator and denominator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{\cos x}} \times \dfrac{1}{{2\sin x}}\]
Now we can write the product of two fractions as one fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{2\sin x\cos x}}\]
Take -1 common from numerator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - ({{\cos }^2}x - {{\sin }^2}x)}}{{2\sin x\cos x}}\]
Now we know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\].
Substitute the value of \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in numerator of the fraction and \[2\sin x\cos = \sin 2x\] in the denominator of the fraction.
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - \cos 2x}}{{\sin 2x}}\]
We know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] then changing the angle from x to 2x we can write \[\cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = - \cot 2x\]
Since the term on right hand side of the equation is same as left hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
* \[\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\]
Complete step-by-step solution:
We have to prove that \[ - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
We take left hand side of the equation and convert the cotangent function into tangent function
Left hand side of the equation is \[ - \cot 2x\]
We use the conversion of \[\cot x = \dfrac{1}{{\tan x}}\] to write the left hand side of the equation in terms of tangent
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1}}{{\tan 2x}}\]
Now we know the formula for \[\tan 2x = \dfrac{{1 - {{\tan }^2}x}}{{2\tan x}}\]
\[ \Rightarrow - \cot 2x = \dfrac{{ - (1 - {{\tan }^2}x)}}{{2\tan x}}\]
Multiply negative sign outside the bracket with terms inside the bracket
\[ \Rightarrow - \cot 2x = \dfrac{{ - 1 - ( - {{\tan }^2}x)}}{{2\tan x}}\]
Use the concept that when a negative number is multiplied by a negative number, we get the result as a positive number.
\[ \Rightarrow - \cot 2x = \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Since the term on right hand side of the equation is same as right hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
Note: Alternate method:
We can convert the terms given on the right hand side of the equation in terms of sine and cosine using the formula \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. Later use the formula \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\] to convert the angle from x to 2x.
Right hand side of the equation is \[\dfrac{{{{\tan }^2}x - 1}}{{2\tan x}}\]
Substitute the value of \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in both numerator and denominator of the equation on right hand side
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 1}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Take LCM of the terms in numerator of the equation
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{\dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\dfrac{{2\sin x}}{{\cos x}}}}\]
Write the fraction in simpler form
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{{{\cos }^2}x}} \times \dfrac{{\cos x}}{{2\sin x}}\]
Cancel same factors from numerator and denominator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{\cos x}} \times \dfrac{1}{{2\sin x}}\]
Now we can write the product of two fractions as one fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{{{\sin }^2}x - {{\cos }^2}x}}{{2\sin x\cos x}}\]
Take -1 common from numerator of the fraction
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - ({{\cos }^2}x - {{\sin }^2}x)}}{{2\sin x\cos x}}\]
Now we know that \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] and \[2\sin x\cos = \sin 2x\].
Substitute the value of \[{\cos ^2}x - {\sin ^2}x = \cos 2x\] in numerator of the fraction and \[2\sin x\cos = \sin 2x\] in the denominator of the fraction.
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = \dfrac{{ - \cos 2x}}{{\sin 2x}}\]
We know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] then changing the angle from x to 2x we can write \[\cot 2x = \dfrac{{\cos 2x}}{{\sin 2x}}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 1}}{{2\tan x}} = - \cot 2x\]
Since the term on right hand side of the equation is same as left hand side of the equation, we can write LHS \[ = \] RHS
Hence Proved
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

