
Prove that $\cos \left( {{\sin }^{-1}}\dfrac{3}{5}+{{\cot }^{-1}}\dfrac{3}{2} \right)=\dfrac{6}{5\sqrt{13}}$ \[\]
Answer
577.5k+ views
Hint: We are going to substitute ${{\sin }^{-1}}\dfrac{3}{5}$ with $\alpha $and ${{\cot }^{-1}}\dfrac{3}{2}$ with$\beta $. Then we will use definitions of trigonometric ratios to determine the values required to use in the formula,
$\cos (\alpha +\beta )=\cos \alpha .\cos \beta -\sin \alpha .\sin \beta $.
Complete step by step answer:
In a right angled-triangle $\Delta \text{ABC}$ we denote the perpendicular $\overline{\text{AB}}$ by $p$, the $ \overline{\text{BC}}$ base by $b$ and the hypotenuse $ \overline{\text{AC}}$ by $h$.\[\]
From Pythagoras theorem,
\[{{p}^{2}}+{{b}^{2}}={{h}^{2}}\]
Let us also denote$\angle \text{ACB}=\theta $,
Then following the conventional the trigonometric definitions,
\[\sin \theta =\dfrac{p}{h},\cos \theta =\dfrac{b}{h},\tan \theta =\dfrac{p}{b},\cot \theta =\dfrac{b}{p}\]
Now using Pythagoras theorem,
\[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =\dfrac{{{p}^{2}}}{{{h}^{2}}}+\dfrac{{{b}^{2}}}{{{h}^{2}}}=\dfrac{{{p}^{2}}+{{b}^{2}}}{{{h}^{2}}}=1 \\
& \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-\dfrac{{{p}^{2}}}{{{h}^{2}}}}......(1) \\
\end{align}\]
Again,
\[\cot \theta =\dfrac{b}{p}=\dfrac{\dfrac{b}{h}}{\dfrac{p}{h}}=\dfrac{\dfrac{b}{\sqrt{{{b}^{2}}+{{p}^{2}}}}}{\dfrac{p}{\sqrt{{{b}^{2}}+{{p}^{2}}}}}=\dfrac{\cos \theta }{\sin \theta }\]
From above we obtain,
\[\left. \begin{align}
& \cos \theta =\dfrac{b}{\sqrt{{{b}^{2}}+{{p}^{2}}}} \\
& \sin \theta =\dfrac{p}{\sqrt{{{b}^{2}}+{{p}^{2}}}} \\
\end{align} \right\}........(2)\]
Let us assign ${{\sin }^{-1}}\dfrac{3}{5}=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{2}=\beta $.
Now taking $\sin$ both side of ${{\sin }^{-1}}\dfrac{3}{5}=\alpha $ as
\[\begin{align}
& {{\sin }^{-1}}\dfrac{3}{5}=\alpha \\
& \Rightarrow \sin ({{\sin }^{-1}}\dfrac{3}{5})=\sin \alpha \\
& \Rightarrow \sin \alpha =\dfrac{3}{5} \\
& \Rightarrow \text{cos}\alpha =\sqrt{1-{{\sin }^{2}}\alpha }=\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}=\dfrac{4}{5}\left( \text{from}\left( 1 \right) \right) \\
\end{align}\]
Similarly taking cot both side of ${{\cot }^{-1}}\dfrac{3}{2}=\beta $,
\[\begin{align}
& {{\cot }^{-1}}\dfrac{3}{2}=\beta \\
& \Rightarrow \cot \left( {{\cot }^{-1}}\dfrac{3}{2} \right)=\cot \beta \\
& \Rightarrow \cot \beta =\dfrac{3}{2} \\
& \Rightarrow \cos \beta =\dfrac{3}{\sqrt{{{3}^{2}}+{{2}^{2}}}}=\dfrac{3}{\sqrt{13}},\sin \beta =\dfrac{2}{\sqrt{{{3}^{2}}+{{2}^{2}}}}=\dfrac{2}{\sqrt{13}}\left( \text{from}\left( 2 \right) \right) \\
& \\
\end{align}\]
Now we have all determined all the values to use in the formula,$\cos (\alpha +\beta )=\cos \alpha .\cos \beta -\sin \alpha .\sin \beta $.\[\]
Now putting all the values in the left hand side of the proof,
\[\begin{align}
& \cos \left( {{\sin }^{-1}}\dfrac{3}{5}+{{\cot }^{-1}}\dfrac{3}{2} \right) \\
& =\cos \left( \alpha +\beta \right) \\
& =\cos \alpha \cdot \cos \beta -\sin \alpha \cdot \sin \beta \\
& =\dfrac{4}{5}\cdot \dfrac{3}{\sqrt{13}}-\dfrac{3}{5}\cdot \dfrac{2}{\sqrt{13}}=\dfrac{6}{5\sqrt{13}} \\
\end{align}\]
The value obtained is equal to the right hand side of the proof. Hence Proved.
Note: In this problem we need to take care of proper placement during the calculation values while using the formula. The misplacement of values will result in hindrance in proof. We also need to be careful when we are taking inverse of any mathematical function because it may also be possible that the inverse may not be defined. In this problem the value of ${{\sin }^{-1}}\dfrac{3}{5}$ and ${{\cot }^{-1}}\dfrac{3}{2}$ lies domains of $\sin $and $\cot $functions respectively. In other problems if you ever find values which do not lie in the domain know that then the functions are not invertible and you cannot proceed further.
$\cos (\alpha +\beta )=\cos \alpha .\cos \beta -\sin \alpha .\sin \beta $.
Complete step by step answer:
In a right angled-triangle $\Delta \text{ABC}$ we denote the perpendicular $\overline{\text{AB}}$ by $p$, the $ \overline{\text{BC}}$ base by $b$ and the hypotenuse $ \overline{\text{AC}}$ by $h$.\[\]
From Pythagoras theorem,
\[{{p}^{2}}+{{b}^{2}}={{h}^{2}}\]
Let us also denote$\angle \text{ACB}=\theta $,
Then following the conventional the trigonometric definitions,
\[\sin \theta =\dfrac{p}{h},\cos \theta =\dfrac{b}{h},\tan \theta =\dfrac{p}{b},\cot \theta =\dfrac{b}{p}\]
Now using Pythagoras theorem,
\[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =\dfrac{{{p}^{2}}}{{{h}^{2}}}+\dfrac{{{b}^{2}}}{{{h}^{2}}}=\dfrac{{{p}^{2}}+{{b}^{2}}}{{{h}^{2}}}=1 \\
& \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-\dfrac{{{p}^{2}}}{{{h}^{2}}}}......(1) \\
\end{align}\]
Again,
\[\cot \theta =\dfrac{b}{p}=\dfrac{\dfrac{b}{h}}{\dfrac{p}{h}}=\dfrac{\dfrac{b}{\sqrt{{{b}^{2}}+{{p}^{2}}}}}{\dfrac{p}{\sqrt{{{b}^{2}}+{{p}^{2}}}}}=\dfrac{\cos \theta }{\sin \theta }\]
From above we obtain,
\[\left. \begin{align}
& \cos \theta =\dfrac{b}{\sqrt{{{b}^{2}}+{{p}^{2}}}} \\
& \sin \theta =\dfrac{p}{\sqrt{{{b}^{2}}+{{p}^{2}}}} \\
\end{align} \right\}........(2)\]
Let us assign ${{\sin }^{-1}}\dfrac{3}{5}=\alpha $ and ${{\cot }^{-1}}\dfrac{3}{2}=\beta $.
Now taking $\sin$ both side of ${{\sin }^{-1}}\dfrac{3}{5}=\alpha $ as
\[\begin{align}
& {{\sin }^{-1}}\dfrac{3}{5}=\alpha \\
& \Rightarrow \sin ({{\sin }^{-1}}\dfrac{3}{5})=\sin \alpha \\
& \Rightarrow \sin \alpha =\dfrac{3}{5} \\
& \Rightarrow \text{cos}\alpha =\sqrt{1-{{\sin }^{2}}\alpha }=\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}=\dfrac{4}{5}\left( \text{from}\left( 1 \right) \right) \\
\end{align}\]
Similarly taking cot both side of ${{\cot }^{-1}}\dfrac{3}{2}=\beta $,
\[\begin{align}
& {{\cot }^{-1}}\dfrac{3}{2}=\beta \\
& \Rightarrow \cot \left( {{\cot }^{-1}}\dfrac{3}{2} \right)=\cot \beta \\
& \Rightarrow \cot \beta =\dfrac{3}{2} \\
& \Rightarrow \cos \beta =\dfrac{3}{\sqrt{{{3}^{2}}+{{2}^{2}}}}=\dfrac{3}{\sqrt{13}},\sin \beta =\dfrac{2}{\sqrt{{{3}^{2}}+{{2}^{2}}}}=\dfrac{2}{\sqrt{13}}\left( \text{from}\left( 2 \right) \right) \\
& \\
\end{align}\]
Now we have all determined all the values to use in the formula,$\cos (\alpha +\beta )=\cos \alpha .\cos \beta -\sin \alpha .\sin \beta $.\[\]
Now putting all the values in the left hand side of the proof,
\[\begin{align}
& \cos \left( {{\sin }^{-1}}\dfrac{3}{5}+{{\cot }^{-1}}\dfrac{3}{2} \right) \\
& =\cos \left( \alpha +\beta \right) \\
& =\cos \alpha \cdot \cos \beta -\sin \alpha \cdot \sin \beta \\
& =\dfrac{4}{5}\cdot \dfrac{3}{\sqrt{13}}-\dfrac{3}{5}\cdot \dfrac{2}{\sqrt{13}}=\dfrac{6}{5\sqrt{13}} \\
\end{align}\]
The value obtained is equal to the right hand side of the proof. Hence Proved.
Note: In this problem we need to take care of proper placement during the calculation values while using the formula. The misplacement of values will result in hindrance in proof. We also need to be careful when we are taking inverse of any mathematical function because it may also be possible that the inverse may not be defined. In this problem the value of ${{\sin }^{-1}}\dfrac{3}{5}$ and ${{\cot }^{-1}}\dfrac{3}{2}$ lies domains of $\sin $and $\cot $functions respectively. In other problems if you ever find values which do not lie in the domain know that then the functions are not invertible and you cannot proceed further.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

