
Prove that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)\]
Answer
588.9k+ views
Hint: To prove the statement at first we have to assume each term in LHS as separate variables. For example consider \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)\] be equal to a variable x and \[{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)\] be equal to another variable y. Then By using the property of trigonometric inverse function we will find out \[\cos x\] and \[\cos y\]. Then we will find corresponding values of \[\sin x\] and \[\sin y\]. Finally we have to find out the value of \[\cos (x + y)\] by substituting the values of \[\cos x\],\[\cos y\],\[\sin x\] and \[\sin y\] obtained earlier and by using the properties of trigonometric inverse function we can prove the given statement.
Complete step by step answer:
The LHS of the statement is given by
\[LHS = {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)\] ………………………… (1)
Let \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = x\] ………………………… (2)
And \[{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = y\] ………………………… (3)
But we know the property of the trigonometric function that if \[{\cos ^{ - 1}}\theta = A\] then \[\theta = \cos A\]. Hence using this property we can write eq. (2) and (3) as
\[\cos x = \dfrac{4}{5}\] ………………………… (4)
And \[\cos y = \dfrac{{12}}{{13}}\] ………………………… (5)
Again we know the sine and cosine functions are related by
\[\sin \theta = \sqrt {1 - {{\cos }^2}\theta } \] ………………………… (6)
Applying these formulae to eq. (4) and (5), we will obtain,
\[
\sin x = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \\
= \sqrt {\dfrac{9}{{25}}} \\
= \dfrac{3}{5} \\
\]
………………………………………… (7)
And
\[
\sin y = \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} \\
= \sqrt {\dfrac{{25}}{{169}}} \\
= \dfrac{5}{{13}} \\
\]
……………………………………………. (8)
We know the formulae that
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\] ……………………………. (9)
Now substituting the values of eq. (2), (3), (4), (5), (6) and (7) in eq. (9) we will get,
\[
\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)} \right] = \left( {\dfrac{4}{5}} \right)\left( {\dfrac{{12}}{{13}}} \right) - \left( {\dfrac{3}{5}} \right)\left( {\dfrac{5}{{13}}} \right) \\
= \dfrac{{48}}{{65}} - \dfrac{3}{{13}} \\
= \dfrac{{33}}{{65}} \\
\]
……………………………….. (10)
Using the property of inverse trigonometric function we can write eq. (10) as
\[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)\]
Now the statement is proved.
Note: In alternative method we can apply direct formula given by, \[{\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left[ {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right]\] to prove the statement.
Complete step by step answer:
The LHS of the statement is given by
\[LHS = {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)\] ………………………… (1)
Let \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = x\] ………………………… (2)
And \[{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = y\] ………………………… (3)
But we know the property of the trigonometric function that if \[{\cos ^{ - 1}}\theta = A\] then \[\theta = \cos A\]. Hence using this property we can write eq. (2) and (3) as
\[\cos x = \dfrac{4}{5}\] ………………………… (4)
And \[\cos y = \dfrac{{12}}{{13}}\] ………………………… (5)
Again we know the sine and cosine functions are related by
\[\sin \theta = \sqrt {1 - {{\cos }^2}\theta } \] ………………………… (6)
Applying these formulae to eq. (4) and (5), we will obtain,
\[
\sin x = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \\
= \sqrt {\dfrac{9}{{25}}} \\
= \dfrac{3}{5} \\
\]
………………………………………… (7)
And
\[
\sin y = \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} \\
= \sqrt {\dfrac{{25}}{{169}}} \\
= \dfrac{5}{{13}} \\
\]
……………………………………………. (8)
We know the formulae that
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\] ……………………………. (9)
Now substituting the values of eq. (2), (3), (4), (5), (6) and (7) in eq. (9) we will get,
\[
\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)} \right] = \left( {\dfrac{4}{5}} \right)\left( {\dfrac{{12}}{{13}}} \right) - \left( {\dfrac{3}{5}} \right)\left( {\dfrac{5}{{13}}} \right) \\
= \dfrac{{48}}{{65}} - \dfrac{3}{{13}} \\
= \dfrac{{33}}{{65}} \\
\]
……………………………….. (10)
Using the property of inverse trigonometric function we can write eq. (10) as
\[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)\]
Now the statement is proved.
Note: In alternative method we can apply direct formula given by, \[{\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left[ {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right]\] to prove the statement.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

