
Prove that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)\]
Answer
575.4k+ views
Hint: To prove the statement at first we have to assume each term in LHS as separate variables. For example consider \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)\] be equal to a variable x and \[{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)\] be equal to another variable y. Then By using the property of trigonometric inverse function we will find out \[\cos x\] and \[\cos y\]. Then we will find corresponding values of \[\sin x\] and \[\sin y\]. Finally we have to find out the value of \[\cos (x + y)\] by substituting the values of \[\cos x\],\[\cos y\],\[\sin x\] and \[\sin y\] obtained earlier and by using the properties of trigonometric inverse function we can prove the given statement.
Complete step by step answer:
The LHS of the statement is given by
\[LHS = {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)\] ………………………… (1)
Let \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = x\] ………………………… (2)
And \[{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = y\] ………………………… (3)
But we know the property of the trigonometric function that if \[{\cos ^{ - 1}}\theta = A\] then \[\theta = \cos A\]. Hence using this property we can write eq. (2) and (3) as
\[\cos x = \dfrac{4}{5}\] ………………………… (4)
And \[\cos y = \dfrac{{12}}{{13}}\] ………………………… (5)
Again we know the sine and cosine functions are related by
\[\sin \theta = \sqrt {1 - {{\cos }^2}\theta } \] ………………………… (6)
Applying these formulae to eq. (4) and (5), we will obtain,
\[
\sin x = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \\
= \sqrt {\dfrac{9}{{25}}} \\
= \dfrac{3}{5} \\
\]
………………………………………… (7)
And
\[
\sin y = \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} \\
= \sqrt {\dfrac{{25}}{{169}}} \\
= \dfrac{5}{{13}} \\
\]
……………………………………………. (8)
We know the formulae that
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\] ……………………………. (9)
Now substituting the values of eq. (2), (3), (4), (5), (6) and (7) in eq. (9) we will get,
\[
\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)} \right] = \left( {\dfrac{4}{5}} \right)\left( {\dfrac{{12}}{{13}}} \right) - \left( {\dfrac{3}{5}} \right)\left( {\dfrac{5}{{13}}} \right) \\
= \dfrac{{48}}{{65}} - \dfrac{3}{{13}} \\
= \dfrac{{33}}{{65}} \\
\]
……………………………….. (10)
Using the property of inverse trigonometric function we can write eq. (10) as
\[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)\]
Now the statement is proved.
Note: In alternative method we can apply direct formula given by, \[{\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left[ {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right]\] to prove the statement.
Complete step by step answer:
The LHS of the statement is given by
\[LHS = {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)\] ………………………… (1)
Let \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = x\] ………………………… (2)
And \[{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = y\] ………………………… (3)
But we know the property of the trigonometric function that if \[{\cos ^{ - 1}}\theta = A\] then \[\theta = \cos A\]. Hence using this property we can write eq. (2) and (3) as
\[\cos x = \dfrac{4}{5}\] ………………………… (4)
And \[\cos y = \dfrac{{12}}{{13}}\] ………………………… (5)
Again we know the sine and cosine functions are related by
\[\sin \theta = \sqrt {1 - {{\cos }^2}\theta } \] ………………………… (6)
Applying these formulae to eq. (4) and (5), we will obtain,
\[
\sin x = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \\
= \sqrt {\dfrac{9}{{25}}} \\
= \dfrac{3}{5} \\
\]
………………………………………… (7)
And
\[
\sin y = \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} \\
= \sqrt {\dfrac{{25}}{{169}}} \\
= \dfrac{5}{{13}} \\
\]
……………………………………………. (8)
We know the formulae that
\[\cos (x + y) = \cos x\cos y - \sin x\sin y\] ……………………………. (9)
Now substituting the values of eq. (2), (3), (4), (5), (6) and (7) in eq. (9) we will get,
\[
\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)} \right] = \left( {\dfrac{4}{5}} \right)\left( {\dfrac{{12}}{{13}}} \right) - \left( {\dfrac{3}{5}} \right)\left( {\dfrac{5}{{13}}} \right) \\
= \dfrac{{48}}{{65}} - \dfrac{3}{{13}} \\
= \dfrac{{33}}{{65}} \\
\]
……………………………….. (10)
Using the property of inverse trigonometric function we can write eq. (10) as
\[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)\]
Now the statement is proved.
Note: In alternative method we can apply direct formula given by, \[{\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left[ {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right]\] to prove the statement.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

